11 research outputs found

    Microhabitat associations and seedling bank dynamics in a neotropical forest

    Full text link
    We conducted a rigorous test of tropical tree seedling microhabitat differentiation by examining microhabitat associations, survival and growth of established seedlings of ten tropical tree species representing a four-factor gradient in seed size. Eight microhabitat variables describing soil and light conditions were measured directly adjacent to each of 588 seedlings within twelve 10×100 m belt transects at Paracou, French Guiana, and at 264 reference points along the transects. From these measurements, we defined three principal components describing soil richness, soil softness and canopy openness. Six of ten species (in 9 of 30 total cases) were distributed non-randomly with respect to microhabitat along at least one principal component. However, few species demonstrated clear microhabitat specialization. All shifts in distribution relative to reference points were in the same direction (richer, softer soil). Furthermore, of 135 pairwise comparisons among the species, only 7 were significantly different. More than three-fourths of all seedlings (75.3%) survived over the 2-year monitoring period, but survival rates varied widely among species. In no case was the probability of survival influenced by any microhabitat parameter. Relative height growth rates for the seedlings over 2 years varied from −0.031 cm cm −1  year −1 ( Dicorynia guianensis , Caesalpiniaceae) to 0.088 cm cm −1  year −1 ( Virola michelii , Myristicaceae). In only 4 of 30 cases was height growth significantly associated with one of the three principal components. Because the conditions in this study were designed to maximize the chance of finding microhabitat differentiation among a group of species differing greatly in life history traits, the lack of microhabitat specialization it uncovered suggests that microhabitat partitioning among tropical tree species at the established seedling stage is unlikely to contribute greatly to coexistence among these species.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47708/1/442_2004_Article_1691.pd

    The Dicorynia guianensis paradoxes : seed dispersal and predispersal seed parasitism in an anemochorous tree of Guianas' rain forests

    No full text
    D. guianensis est une Caesalpiniaceae arborescente dont le fruit et la graine présentent un ensemble de caractÚres morphologiques et biométriques propres a un grand nombre d'espÚces anémochores. Les gousses indéhiscentes contiennent une, deux ou trois graines et sont dispersées à des distances dépassant rarement plus de 30 m depuis l'arbre producteur. Les graines sont soumises a des taux de destruction élevés avant leur dispersion, imputables essentiellement a des insectes séminivores. Le nombre de graines indemnes est plus important dans les gousses contenant deux et trois graines. Celles-ci représentent une part essentielle de la banque séminale qui assure le potentiel de régénération (...

    Discrepancies between genetic and ecological divergence patterns suggest a complex biogeographic history in a Neotropical genus

    No full text
    Phylogenetic patterns and the underlying speciation processes can be deduced from morphological, functional, and ecological patterns of species similarity and divergence. In some cases, though, species retain multiple similarities and remain almost indistinguishable; in other cases, evolutionary convergence can make such patterns misleading; very often in such cases, the "true" picture only emerges from carefully built molecular phylogenies, which may come with major surprises. In addition, closely related species may experience gene flow after divergence, thus potentially blurring species delimitation. By means of advanced inferential methods, we studied molecular divergence between species of the Virola genus (Myristicaceae): widespread Virola michelii and recently described, endemic V. kwatae, using widespread V. surinamensis as a more distantly related outgroup with different ecology and morphology-although with overlapping range. Contrary to expectations, we found that the latter, and not V. michelii, was sister to V. kwatae. Therefore, V. kwatae probably diverged from V. surinamensis through a recent morphological and ecological shift, which brought it close to distantly related V. michelii. Through the modeling of the divergence process, we inferred that gene flow between V. surinamensis and V. kwatae stopped soon after their divergence and resumed later, in a classical secondary contact event which did not erase their ecological and morphological differences. While we cannot exclude that initial divergence occurred in allopatry, current species distribution and the absence of geographical barriers make complete isolation during speciation unlikely. We tentatively conclude that (a) it is possible that divergence occurred in allopatry/parapatry and (b) secondary contact did not suppress divergence

    Relationships between demography and gene flow and their importance for the conservation of tree populations in tropical forests under selective felling regimes

    No full text
    Determining how tropical tree populations subject to selective felling (logging) pressure may be conserved is a crucial issue for forest management and studying this issue requires a comprehensive understanding of the relationships between population demography and gene flow. We used a simulation model, SELVA, to study (1) the relative impact of demographic factors (juvenile mortality, felling regime) and genetic factors (selfing, number and location of fathers, mating success) on long-term genetic diversity; and (2) the impact of different felling regimes on population size versus genetic diversity. Impact was measured by means of model sensitivity analyses. Juvenile mortality had the highest impact on the number of alleles and genotypes, and on the genetic distance between the original and final populations. Selfing had the greatest impact on observed heterozygote frequency and fixation index. Other factors and interactions had only minor effects. Overall, felling had a greater impact on population size than on genetic diversity. Interestingly, populations under relatively low felling pressure even had a somewhat lower fixation index than undisturbed populations (no felling). We conclude that demographic processes such as juvenile mortality should be modelled thoroughly to obtain reliable long-term predictions of genetic diversity. Mortality in selfed and outcrossed progenies should be modelled explicitly by taking inbreeding depression into account. The modelling of selfing based on population rate appeared to be oversimplifying and should account for inter-tree variation. Forest management should pay particular attention to the regeneration capacities of felled species

    La connaissance d'une flore: qui a récolté quoi en Guyane française depuis Aublet?

    No full text
    corecore