3,587 research outputs found

    Holographic data storage in a DX-center material

    Get PDF
    We report on the optical storage of digital data in a semiconductor sample containing DX centers. The diffraction efficiency and the bit-error-rate performance of multiplexed data images are shown to agree well with a simple model of the material. Uniform storage without an exposure schedule is demonstrated. The volume sensitivity is found to be ~10^3 times that of LiNBO3:Fe. The importance of coherent addition of scattered light with diffracted light in holographic data storage is discussed

    Experimental verification of reciprocity relations in quantum thermoelectric transport

    Get PDF
    Symmetry relations are manifestations of fundamental principles and constitute cornerstones of modern physics. An example are the Onsager relations between coefficients connecting thermodynamic fluxes and forces, central to transport theory and experiments. Initially formulated for classical systems, these reciprocity relations are also fulfilled in quantum conductors. Surprisingly, novel relations have been predicted specifically for thermoelectric transport. However, whereas these thermoelectric reciprocity relations have to date not been verified, they have been predicted to be sensitive to inelastic scattering, always present at finite temperature. The question whether the relations exist in practice is important for thermoelectricity: whereas their existence may simplify the theory of complex thermoelectric materials, their absence has been shown to enable, in principle, higher thermoelectric energy conversion efficiency for a given material quality. Here we experimentally verify the thermoelectric reciprocity relations in a four-terminal mesoscopic device where each terminal can be electrically and thermally biased, individually. The linear response thermoelectric coefficients are found to be symmetric under simultaneous reversal of magnetic field and exchange of injection and emission contacts. Intriguingly, we also observe the breakdown of the reciprocity relations as a function of increasing thermal bias. Our measurements thus clearly establish the existence of the thermoelectric reciprocity relations, as well as the possibility to control their breakdown with the potential to enhance thermoelectric performanceComment: 7 pages, 5 figure

    Low-lying fermion modes of Nf=2 improved Wilson fermions

    Get PDF
    We present preliminary results for the topological charge and susceptibility determined from the low-lying eigenmodes of the Wilson-Dirac operator. These modes have been computed on dynamical configurations with Nf=2 non-perturbatively improved Wilson fermions. We compare our results with the eigenmodes of fermions in the quenched approximation.Comment: Lattice2001(confinement), 3 pages, 5 Figure

    Parallel Entangling Operations on a Universal Ion Trap Quantum Computer

    Full text link
    The circuit model of a quantum computer consists of sequences of gate operations between quantum bits (qubits), drawn from a universal family of discrete operations. The ability to execute parallel entangling quantum gates offers clear efficiency gains in numerous quantum circuits as well as for entire algorithms such as Shor's factoring algorithm and quantum simulations. In cases such as full adders and multiple-control Toffoli gates, parallelism can provide an exponential improvement in overall execution time. More importantly, quantum gate parallelism is essential for the practical fault-tolerant error correction of qubits that suffer from idle errors. The implementation of parallel quantum gates is complicated by potential crosstalk, especially between qubits fully connected by a common-mode bus, such as in Coulomb-coupled trapped atomic ions or cavity-coupled superconducting transmons. Here, we present the first experimental results for parallel 2-qubit entangling gates in an array of fully-connected trapped ion qubits. We demonstrate an application of this capability by performing a 1-bit full addition operation on a quantum computer using a depth-4 quantum circuit. These results exploit the power of highly connected qubit systems through classical control techniques, and provide an advance toward speeding up quantum circuits and achieving fault tolerance with trapped ion quantum computers

    Diffusion Enhancement in a Periodic Potential under High-Frequency Space-Dependent Forcing

    Get PDF
    We study the long-time behavior of underdamped Brownian particle moving through a viscous medium and in a systematic potential, when it is subjected to a space-dependent high-frequency periodic force. When the frequency is very large, much larger than all other relevant system-frequencies, there is a Kapitsa time-window wherein the effect of frequency dependent forcing can be replaced by a static effective potential. Our new analysis includes the case when the forcing, in addition to being frequency-dependent, is space-dependent as well. The results of the Kapitsa analysis then lead to additional contributions to the effective potential. These are applied to the numerical calculation of the diffusion coefficient (D) for a Brownian particle moving in a periodic potential. Presented are numerical results, which are in excellent agreement with theoretical predictions and which indicate a significant enhancement of D due to the space-dependent forcing terms. In addition we study the transport property (current) of underdamped Brownian particles in a ratchet potential.Comment: RevTex 6 pages, 5 figure

    Demon-free quantum Brownian motors

    Full text link
    A quantum Smoluchowski equation is put forward that consistently describes thermal quantum states. In particular, it notably does not induce a violation of the second law of thermodynamics. This so modified kinetic equation is applied to study {\it analytically} directed quantum transport at strong friction in arbitrarily shaped ratchet potentials that are driven by nonthermal two-state noise. Depending on the mutual interplay of quantum tunneling and quantum reflection these quantum corrections can induce both, either a sizable enhancement or a suppression of transport. Moreover, the threshold for current reversals becomes markedly shifted due to such quantum fluctuations.Comment: 4 pages 3 figure

    Analytical model of brittle destruction based on hypothesis of scale similarity

    Full text link
    The size distribution of dust particles in nuclear fusion devices is close to the power function. A function of this kind can be the result of brittle destruction. From the similarity assumption it follows that the size distribution obeys the power law with the exponent between -4 and -1. The model of destruction has much in common with the fractal theory. The power exponent can be expressed in terms of the fractal dimension. Reasonable assumptions on the shape of fragments concretize the power exponent, and vice versa possible destruction laws can be inferred on the basis of measured size distributions.Comment: 10 pages, 3 figure
    corecore