688 research outputs found

    Thermal recoil force, telemetry, and the Pioneer anomaly

    Full text link
    Precision navigation of spacecraft requires accurate knowledge of small forces, including the recoil force due to anisotropies of thermal radiation emitted by spacecraft systems. We develop a formalism to derive the thermal recoil force from the basic principles of radiative heat exchange and energy-momentum conservation. The thermal power emitted by the spacecraft can be computed from engineering data obtained from flight telemetry, which yields a practical approach to incorporate the thermal recoil force into precision spacecraft navigation. Alternatively, orbit determination can be used to estimate the contribution of the thermal recoil force. We apply this approach to the Pioneer anomaly using a simulated Pioneer 10 Doppler data set.Comment: 10 pages, 3 figures. Published versio

    New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups

    Get PDF
    We present a new and considerably extended parameterization of the thermodynamic activity coefficient model AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) at room temperature. AIOMFAC combines a Pitzer-like electrolyte solution model with a UNIFAC-based group-contribution approach and explicitly accounts for interactions between organic functional groups and inorganic ions. Such interactions constitute the salt-effect, may cause liquid-liquid phase separation, and affect the gas-particle partitioning of aerosols. The previous AIOMFAC version was parameterized for alkyl and hydroxyl functional groups of alcohols and polyols. With the goal to describe a wide variety of organic compounds found in atmospheric aerosols, we extend here the parameterization of AIOMFAC to include the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon. Thermodynamic equilibrium data of organic-inorganic systems from the literature are critically assessed and complemented with new measurements to establish a comprehensive database. The database is used to determine simultaneously the AIOMFAC parameters describing interactions of organic functional groups with the ions H^+, Li^+, Na^+, K^+, NH_(4)^+, Mg^(2+), Ca^(2+), Cl^−, Br^−, NO_(3)^−, HSO_(4)^−, and SO_(4)^(2−). Detailed descriptions of different types of thermodynamic data, such as vapor-liquid, solid-liquid, and liquid-liquid equilibria, and their use for the model parameterization are provided. Issues regarding deficiencies of the database, types and uncertainties of experimental data, and limitations of the model, are discussed. The challenging parameter optimization problem is solved with a novel combination of powerful global minimization algorithms. A number of exemplary calculations for systems containing atmospherically relevant aerosol components are shown. Amongst others, we discuss aqueous mixtures of ammonium sulfate with dicarboxylic acids and with levoglucosan. Overall, the new parameterization of AIOMFAC agrees well with a large number of experimental datasets. However, due to various reasons, for certain mixtures important deviations can occur. The new parameterization makes AIOMFAC a versatile thermodynamic tool. It enables the calculation of activity coefficients of thousands of different organic compounds in organic-inorganic mixtures of numerous components. Models based on AIOMFAC can be used to compute deliquescence relative humidities, liquid-liquid phase separations, and gas-particle partitioning of multicomponent mixtures of relevance for atmospheric chemistry or in other scientific fields

    Synthetic three-dimensional atomic structures assembled atom by atom

    Full text link
    We demonstrate the realization of large, fully loaded, arbitrarily-shaped three-dimensional arrays of single atoms. Using holographic methods and real-time, atom-by-atom, plane-by-plane assembly, we engineer atomic structures with up to 72 atoms separated by distances of a few micrometres. Our method allows for high average filling fractions and the unique possibility to obtain defect-free arrays with high repetition rates. These results find immediate application for the quantum simulation of spin Hamiltonians using Rydberg atoms in state-of-the-art platforms, and are very promising for quantum-information processing with neutral atoms.Comment: 5 pages, 3 figure

    Surface Tension of Seawater

    Get PDF
    New measurements and a reference correlation for the surface tension of seawater at atmospheric pressure are presented in this paper. Surface tension of seawater was measured across a salinity range of 20 ⩽ S ⩽ 131 g/kg and a temperature range of 1 ⩽ t ⩽ 92 °C at atmospheric pressure using the Wilhelmy plate method. The uncertainty within measurements varied from 0.18 to 0.37 mN/m with the average uncertainty being 0.22 mN/m. The experimental procedures were validated with tests conducted on ACS reagent grade water and aqueous sodium chloride solutions. Literature data and present measurements were evaluated and a reference correlation was developed expressing surface tension of seawater as a function of temperature and salinity. The average absolute percentage deviation between measurements and the correlation was 0.19% while the maximum deviation was 0.60%.Center for Clean Water and Clean Energy at MIT and KFUPM (Project R13-CW-10

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    A review of polymeric membranes and processes for potable water reuse

    Get PDF
    Conventional water resources in many regions are insufficient to meet the water needs of growing populations, thus reuse is gaining acceptance as a method of water supply augmentation. Recent advancements in membrane technology have allowed for the reclamation of municipal wastewater for the production of drinking water, i.e., potable reuse. Although public perception can be a challenge, potable reuse is often the least energy-intensive method of providing additional drinking water to water stressed regions. A variety of membranes have been developed that can remove water contaminants ranging from particles and pathogens to dissolved organic compounds and salts. Typically, potable reuse treatment plants use polymeric membranes for microfiltration or ultrafiltration in conjunction with reverse osmosis and, in some cases, nanofiltration. Membrane properties, including pore size, wettability, surface charge, roughness, thermal resistance, chemical stability, permeability, thickness and mechanical strength, vary between membranes and applications. Advancements in membrane technology including new membrane materials, coatings, and manufacturing methods, as well as emerging membrane processes such as membrane bioreactors, electrodialysis, and forward osmosis have been developed to improve selectivity, energy consumption, fouling resistance, and/or capital cost. The purpose of this review is to provide a comprehensive summary of the role of polymeric membranes and process components in the treatment of wastewater to potable water quality and to highlight recent advancements and needs in separation processes. Beyond membranes themselves, this review covers the background and history of potable reuse, and commonly used potable reuse process chains, pretreatment steps, and advanced oxidation processes. Key trends in membrane technology include novel configurations, materials, and fouling prevention techniques. Challenges still facing membrane-based potable reuse applications, including chemical and biological contaminant removal, membrane fouling, and public perception, are highlighted as areas in need of further research and development. Keywords: Potable reuse; Polymeric membranes; Reverse osmosis; Filtration; Fouling; Revie

    Thermodynamic analysis of humidification dehumidification desalination cycles

    Get PDF
    Humidification–dehumidification desalination (HDH) is a promising technology for small-scale water production applications. There are several embodiments of this technology which have been investigated by researchers around the world. However, from a previous literature [1], we have found that no study carried out a detailed thermodynamic analysis in order to improve and/ or optimize the system performance. In this paper, we analyze the thermodynamic performance of various HDH cycles by way of a theoretical cycle analysis. In addition, we propose novel high performance variations on those cycles. These high-performance cycles include multi-extraction, multi-pressure and thermal vapor compression cycles. It is predicted that the systems based on these novel cycles will have gained output ratio in excess of 5 and will outperform existing HDH systems.King Fahd University of Petroleum and MineralsCenter for Clean Water and Clean Energy at MIT and KFUP

    Common Elements in Interleukin 4 and Insulin Signaling Pathways in Factor-Dependent Hematopoietic Cells.

    Get PDF
    Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1

    Microcrystals coating the wing membranes of a living insect (Psocoptera: Psyllipsocidae) from a Brazilian cave

    Get PDF
    Two specimens of Psyllipsocus yucatan with black wings were found with normal individuals of this species on guano piles produced by the common vampire bat Desmodus rotundus. These specimens have both pairs of wings dorsally and ventrally covered by a black crystalline layer. They did not exhibit any signs of reduced vitality in the field and their morphology is completely normal. This ultrathin (1.5 µm) crystalline layer, naturally deposited on a biological membrane, is documented by photographs, SEM micrographs, energy dispersive spectroscopy (EDS) and X-ray diffractometry (XRD). The crystalline deposit contains iron, carbon and oxygen, but the mineral species could not be identified. Guano probably played a role in its formation; the presence of iron may be a consequence of the excretion of iron by the common vampire bat. This enigmatic phenomenon lacks obvious biological significance but may inspire bionic applications. Nothing similar has ever been observed in terrestrial arthropods
    corecore