175 research outputs found

    Cryo-EM map interpretation and protein model-building using iterative map segmentation.

    Get PDF
    A procedure for building protein chains into maps produced by single-particle electron cryo-microscopy (cryo-EM) is described. The procedure is similar to the way an experienced structural biologist might analyze a map, focusing first on secondary structure elements such as helices and sheets, then varying the contour level to identify connections between these elements. Since the high density in a map typically follows the main-chain of the protein, the main-chain connection between secondary structure elements can often be identified as the unbranched path between them with the highest minimum value along the path. This chain-tracing procedure is then combined with finding side-chain positions based on the presence of density extending away from the main path of the chain, allowing generation of a Cα model. The Cα model is converted to an all-atom model and is refined against the map. We show that this procedure is as effective as other existing methods for interpretation of cryo-EM maps and that it is considerably faster and produces models with fewer chain breaks than our previous methods that were based on approaches developed for crystallographic maps

    DING Proteins from Phylogenetically Different Species Share High Degrees of Sequence and Structure Homology and Block Transcription of HIV-1 LTR Promoter

    Get PDF
    Independent research groups reported that DING protein homologues isolated from bacterial, plant and human cells demonstrate the anti-HIV-1 activity. This might indicate that diverse organisms utilize a DING-mediated broad-range protective innate immunity response to pathogen invasion, and that this mechanism is effective also against HIV-1. We performed structural analyses and evaluated the anti-HIV-1 activity for four DING protein homologues isolated from different species. Our data show that bacterial PfluDING, plant p38SJ (pDING), human phosphate binding protein (HPBP) and human extracellular DING from CD4 T cells (X-DING-CD4) share high degrees of structure and sequence homology. According to earlier reports on the anti-HIV-1 activity of pDING and X-DING-CD4, other members of this protein family from bacteria and humans were able to block transcription of HIV-1 and replication of virus in cell based assays. The efficacy studies for DING-mediated HIV-1 LTR and HIV-1 replication blocking activity showed that the LTR transcription inhibitory concentration 50 (IC50) values ranged from 0.052–0.449 ng/ml; and the HIV-1 replication IC50 values ranged from 0.075–0.311 ng/ml. Treatment of cells with DING protein alters the interaction between p65-NF-κB and HIV-1 LTR. Our data suggest that DING proteins may be part of an innate immunity defense against pathogen invasion; the conserved structure and activity makes them appealing candidates for development of a novel therapeutics targeting HIV-1 transcription

    Protonation States of Remote Residues Affect Binding-Release Dynamics of the Ligand but not the Conformation of apo Ferric Binding Protein

    Full text link
    We have studied the apo (Fe3+ free) form of periplasmic ferric binding protein (FbpA) under different conditions and we have monitored the changes in the binding and release dynamics of H2PO4- that acts as a synergistic anion in the presence of Fe3+. Our simulations predict a dissociation constant of 2.2±\pm0.2 mM which is in remarkable agreement with the experimentally measured value of 2.3±\pm0.3 mM under the same ionization strength and pH conditions. We apply perturbations relevant for changes in environmental conditions as (i) different values of ionic strength (IS), and (ii) protonation of a group of residues to mimic a different pH environment. Local perturbations are also studied by protonation or mutation of a site distal to the binding region that is known to mechanically manipulate the hinge-like motions of FbpA. We find that while the average conformation of the protein is intact in all simulations, the H2PO4- dynamics may be substantially altered by the changing conditions. In particular, the bound fraction which is 20%\% for the wild type system is increased to 50%\% with a D52A mutation/protonation and further to over 90%\% at the protonation conditions mimicking those at pH 5.5. The change in the dynamics is traced to the altered electrostatic distribution on the surface of the protein which in turn affects hydrogen bonding patterns at the active site. The observations are quantified by rigorous free energy calculations. Our results lend clues as to how the environment versus single residue perturbations may be utilized for regulation of binding modes in hFbpA systems in the absence of conformational changes.Comment: 26 pages, 4 figure

    Structural basis for DNA damage-induced phosphoregulation of MDM2 RING domain

    Get PDF
    Phosphorylation of MDM2 by ATM upon DNA damage is an important mechanism for deregulating MDM2, thereby leading to p53 activation. ATM phosphorylates multiple residues near the RING domain of MDM2, but the underlying molecular basis for deregulation remains elusive. Here we show that Ser429 phosphorylation selectively enhances the ubiquitin ligase activity of MDM2 homodimer but not MDM2-MDMX heterodimer. A crystal structure of phospho-Ser429 (pS429)-MDM2 bound to E2–ubiquitin reveals a unique 310-helical feature present in MDM2 homodimer that allows pS429 to stabilize the closed E2–ubiquitin conformation and thereby enhancing ubiquitin transfer. In cells Ser429 phosphorylation increases MDM2 autoubiquitination and degradation upon DNA damage, whereas S429A substitution protects MDM2 from auto-degradation. Our results demonstrate that Ser429 phosphorylation serves as a switch to boost the activity of MDM2 homodimer and promote its self-destruction to enable rapid p53 stabilization and resolve a long-standing controversy surrounding MDM2 auto-degradation in response to DNA damage

    Salvianolic Acid B Prevents Bone Loss in Prednisone-Treated Rats through Stimulation of Osteogenesis and Bone Marrow Angiogenesis

    Get PDF
    Glucocorticoid (GC) induced osteoporosis (GIO) is caused by the long-term use of GC for treatment of autoimmune and inflammatory diseases. The GC related disruption of bone marrow microcirculation and increased adipogenesis contribute to GIO development. However, neither currently available anti-osteoporosis agent is completely addressed to microcirculation and bone marrow adipogenesis. Salvianolic acid B (Sal B) is a polyphenolic compound from a Chinese herbal medicine, Salvia miltiorrhiza Bunge. The aim of this study was to determine the effects of Sal B on osteoblast bone formation, angiogenesis and adipogenesis-associated GIO by performing marrow adipogenesis and microcirculation dilation and bone histomorphometry analyses. (1) In vivo study: Bone loss in GC treated rats was confirmed by significantly decreased BMD, bone strength, cancellous bone mass and architecture, osteoblast distribution, bone formation, marrow microvessel density and diameter along with down-regulation of marrow BMPs expression and increased adipogenesis. Daily treatment with Sal B (40 mg/kg/d) for 12 weeks in GC male rats prevented GC-induced cancellous bone loss and increased adipogenesis while increasing cancellous bone formation rate with improved local microcirculation by capillary dilation. Treatment with Sal B at a higher dose (80 mg/kg/d) not only prevented GC-induced osteopenia, but also increased cancellous bone mass and thickness, associated with increase of marrow BMPs expression, inhibited adipogenesis and further increased microvessel diameters. (2) In vitro study: In concentration from 10−6 mol/L to 10−7 mol/L, Sal B stimulated bone marrow stromal cell (MSC) differentiation to osteoblast and increased osteoblast activities, decreased GC associated adipogenic differentiation by down-regulation of PPARγ mRNA expression, increased Runx2 mRNA expression without osteoblast inducement, and, furthermore, Sal B decreased Dickkopf-1 and increased β-catenin mRNA expression with or without adipocyte inducement in MSC. We conclude that Sal B prevented bone loss in GC-treated rats through stimulation of osteogenesis, bone marrow angiogenesis and inhibition of adipogenesis

    Bone turnover markers in sheep and goat: a review of the scientific literature

    Get PDF
    Bone turnover markers (BTMs) are product of bone cell activity and are generally divided in bone formation and bone resorption markers. The purpose of this review was to structure the available information on the use of BTMs in studies on small ruminants, especially for monitoring their variations related to diet, exercise, gestation and metabolic lactation state, circadian and seasonal variations, and also during skeletal growth. Pre-clinical and translational studies using BTMs with sheep and goats as animal models in orthopaedic research studies to help in the evaluation of the fracture healing process and osteoporosis research are also described in this review. The available information from the reviewed studies was systematically organized in order to highlight the most promising BTMs in small ruminant research, as well as provide a wide view of the use of sheep and goat as animal models in orthopaedic research, type of markers and commercial assay kits with cross-reactivity in sheep and goat, method of sample and storage of serum and urine for bone turnover markers determination and the usefulness and limitations of bone turnover markers in the different studies, therefore an effective tool for researchers that seek answers to different questions while using BTMs in small ruminants.José Arthur de A. Camassa acknowledges to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, for his PhD scholarship 202248/2015-1.info:eu-repo/semantics/publishedVersio

    Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens

    Get PDF
    he antibiotic target. One class of such proteins are the antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F-subtype (ARE-ABCFs), which are widely distributed throughout Gram-positive bacteria and bind the ribosome to alleviate translational inhibition from antibiotics that target the large ribosomal subunit. Here, we present single-particle cryo-EM structures of ARE-ABCF-ribosome complexes from three Gram-positive pathogens: Enterococcus faecalis LsaA, Staphylococcus haemolyticus VgaALC and Listeria monocytogenes VgaL. Supported by extensive mutagenesis analysis, these structures enable a general model for antibiotic resistance mediated by these ARE-ABCFs to be proposed. In this model, ABCF binding to the antibiotic-stalled ribosome mediates antibiotic release via mechanistically diverse long-range conformational relays that converge on a few conserved ribosomal RNA nucleotides located at the peptidyltransferase center. These insights are important for the future development of antibiotics that overcome such target protection resistance mechanisms
    corecore