639 research outputs found
Effect of Dynamical Coulomb Correlations on the Fermi Surface of Na_0.3CoO_2
The t2g quasi-particle spectra of Na_0.3CoO_2 are calculated within the
dynamical mean field theory. It is shown that as a result of dynamical Coulomb
correlations charge is transfered from the nearly filled e_g' subbands to the
a_1g band, thereby reducing orbital polarization among Co t2g states. Dynamical
correlations therefore stabilize the small e_g' Fermi surface pockets, in
contrast to angle-resolved photoemission data, which do not reveal these
pockets.Comment: 4 pages, to appear in PR
Fenologia reprodutiva de espécies vegetais da Floresta Ombrófila Mista do Paraná, Brasil.
(Reproductive phenology of plant species of Mixed Ombrophilous Forest in Paraná, Brazil). The Mixed Ombrophilous Forest (FOM) or Araucaria Forest, vegetation that occupies regions with a highly seasonal climate subject to frost, used to cover 40% of Paraná State. Nowadays, however, there is less than 1% of advanced and well conserved FOM covering this State. This study presents the reproductive phenological patterns (flowering and fruiting) of the plant species found in FOM fragments located in three municipalities of Paraná State in order to subside restoration activities. Monthly phenological observations in 543 individuals of 145 species, representing several life forms (71 trees, 52 bushes, 18 vines and four epiphytes) were conducted between January 2004 and December 2005 employing the activity index. Flowering was recorded mainly between September and December, with a peak in October and November (68 species), followed by fruiting, which was concentrated between December and April, peaking in February (61 species). During the coldest months (June to August), the number of species with flowers or fruits was very low, with less than five species per phenophase. The availability of araucaria (Araucaria angustifolia (Bertol.) Kuntze) seeds varied between the years, but usually occurred between April and September. Significant correlations between phenophases and some abiotic factors, especially day length and temperature, were found. Therefore, plant species of the FOM proved to be highly seasonal, with periods of high and low flowering and fruiting activity, as consequence of the climatic seasonality, characteristic of the study region
Absence of orbital-selective Mott transition in Ca_2-xSr_xRuO4
Quasi-particle spectra of the layer perovskite SrRuO are calculated
within Dynamical Mean Field Theory for increasing values of the on-site Coulomb
energy . At small the planar geometry splits the bands near
into a wide, two-dimensional band and two narrow, nearly
one-dimensional bands. At larger , however, the spectral
distribution of these states exhibit similar correlation features, suggesting a
common metal-insulator transition for all bands at the same critical
.Comment: 4 pages, 4 figure
Surface vs. bulk Coulomb correlations in photoemission spectra of perovskites
Recent photoemission spectra of the perovskite series SrCaVO
revealed strong modifications associated with surface contributions. To study
the effect of Coulomb correlations in the bulk and at the surface the
quasi-particle spectra are evaluated using the dynamical mean field theory. It
is shown that as a result of the reduced coordination number of surface atoms
correlation effects are stronger at the surface than in the bulk, in agreement
with experiment.Comment: 4 pages 3 figure
Photoemission Beyond the Sudden Approximation
The many-body theory of photoemission in solids is reviewed with emphasis on
methods based on response theory. The classification of diagrams into loss and
no-loss diagrams is discussed and related to Keldysh path-ordering
book-keeping. Some new results on energy losses in valence-electron
photoemission from free-electron-like metal surfaces are presented. A way to
group diagrams is presented in which spectral intensities acquire a
Golden-Rule-like form which guarantees positiveness. This way of regrouping
should be useful also in other problems involving spectral intensities, such as
the problem of improving the one-electron spectral function away from the
quasiparticle peak.Comment: 18 pages, 11 figure
Competition of crystal field splitting and Hund's rule coupling in two-orbital magnetic metal-insulator transitions
Competition of crystal field splitting and Hund's rule coupling in magnetic
metal-insulator transitions of half-filled two-orbital Hubbard model is
investigated by multi-orbital slave-boson mean field theory. We show that with
the increase of Coulomb correlation, the system firstly transits from a
paramagnetic (PM) metal to a {\it N\'{e}el} antiferromagnetic (AFM) Mott
insulator, or a nonmagnetic orbital insulator, depending on the competition of
crystal field splitting and the Hund's rule coupling. The different AFM Mott
insulator, PM metal and orbital insulating phase are none, partially and fully
orbital polarized, respectively. For a small and a finite crystal
field, the orbital insulator is robust. Although the system is nonmagnetic, the
phase boundary of the orbital insulator transition obviously shifts to the
small regime after the magnetic correlations is taken into account. These
results demonstrate that large crystal field splitting favors the formation of
the orbital insulating phase, while large Hund's rule coupling tends to destroy
it, driving the low-spin to high-spin transition.Comment: 4 pages, 4 figure
Self-energy and lifetime of Shockley and image states on Cu(100) and Cu(111): Beyond the GW approximation of many-body theory
We report many-body calculations of the self-energy and lifetime of Shockley
and image states on the (100) and (111) surfaces of Cu that go beyond the
approximation of many-body theory. The self-energy is computed in the framework
of the GW\Gamma approximation by including short-range exchange-correlation
(XC) effects both in the screened interaction W (beyond the random-phase
approximation) and in the expansion of the self-energy in terms of W (beyond
the GW approximation). Exchange-correlation effects are described within
time-dependent density-functional theory from the knowledge of an adiabatic
nonlocal XC kernel that goes beyond the local-density approximation.Comment: 8 pages, 5 figures, to appear in Phys. Rev.
Genuine converging solution of self-consistent field equations for extended many-electron systems
Calculations of the ground state of inhomogeneous many-electron systems
involve a solving of the Poisson equation for Coulomb potential and the
Schroedinger equation for single-particle orbitals. Due to nonlinearity and
complexity this set of equations, one believes in the iterative method for the
solution that should consist in consecutive improvement of the potential and
the electron density until the self-consistency is attained. Though this
approach exists for a long time there are two grave problems accompanying its
implementation to infinitely extended systems. The first of them is related
with the Poisson equation and lies in possible incompatibility of the boundary
conditions for the potential with the electron density distribution. The
analysis of this difficulty and suggested resolution are presented for both
infinite conducting systems in jellium approximation and periodic solids. It
provides the existence of self-consistent solution for the potential at every
iteration step due to realization of a screening effect. The second problem
results from the existence of continuous spectrum of Hamiltonian eigenvalues
for unbounded systems. It needs to have a definition of Hilbert space basis
with eigenfunctions of continuous spectrum as elements, which would be
convenient in numerical applications. The definition of scalar product
specifying the Hilbert space is proposed that incorporates a limiting
transition. It provides self-adjointness of Hamiltonian and, respectively, the
orthogonality of eigenfunctions corresponding to the different eigenvalues. In
addition, it allows to normalize them effectively to delta-function and to
prove in the general case the orthogonality of the 'right' and 'left'
eigenfunctions belonging to twofold degenerate eigenvalues.Comment: 12 pages. Reported on Interdisciplinary Workshop "Nonequilibrium
Green's Functions III", August 22 - 26, 2005, University Kiel, Germany. To be
published in Journal of Physics: Conference Series, 2006; Typos in Eqs. (37),
(53) and (54) are corrected. The content of the footnote is changed.
Published version available free online at
http://www.iop.org/EJ/abstract/1742-6596/35/1/01
Riqueza e abundância de espécies zoocóricas como preditores do uso de habitats por macacos-prego (Sapajus nigritus) em mosaicos florestais.
- …
