66 research outputs found

    A genetic analysis of nitric oxide-mediated signaling during chronological aging in the yeast

    Get PDF
    In mammals, NO•, a signaling molecule is implicated in the regulation of vasodilation, neurotransmission and immune response. It is believed that NO• is a signaling molecule also in unicellular organism like yeast and may be involved in the regulation of apoptosis and sporulation. It has been reported that NO• is produced during chronological aging (CA) leading to an increase of the superoxide level, which in turn mediates apoptosis. Since this conclusion was based on indirect measurements of NO• by the Griess reaction, the role of NO• signaling during CA in the yeast remains uncertain. We investigated this issue more precisely using different genetic and biochemical methodologies. We used cells lacking the factors influencing nitrosative stress response like flavohemoglobin metabolizing NO•, S-nitrosoglutathione reductase metabolizing S-nitrosoglutathione and the transcription factor Fzf1p mediating NO• response. We measured the standard parameters describing CA and found an elevation in the superoxide level, percentage of death cells, the level of TUNEL positive cells and a decrease in proliferating potential. These observations showed no significant differences between wild type cells and the disruptants except for a small elevation of the superoxide level in the Δsfa1 mutant. The intracellular NO• level and flavohemoglobin expression decreased rather than increased during CA. Products of general nitrogen metabolism and protein tyrosine nitration were slightly decreased during CA, the magnitude of changes showing no differences between the wild type and the mutant yeast. Altogether, our data indicate that apoptosis during yeast CA is mediated by superoxide signaling rather than NO• signaling

    Sodium Selenide Toxicity Is Mediated by O2-Dependent DNA Breaks

    Get PDF
    Hydrogen selenide is a recurrent metabolite of selenium compounds. However, few experiments studied the direct link between this toxic agent and cell death. To address this question, we first screened a systematic collection of Saccharomyces cerevisiae haploid knockout strains for sensitivity to sodium selenide, a donor for hydrogen selenide (H2Se/HSe−/Se2−). Among the genes whose deletion caused hypresensitivity, homologous recombination and DNA damage checkpoint genes were over-represented, suggesting that DNA double-strand breaks are a dominant cause of hydrogen selenide toxicity. Consistent with this hypothesis, treatment of S. cerevisiae cells with sodium selenide triggered G2/M checkpoint activation and induced in vivo chromosome fragmentation. In vitro, sodium selenide directly induced DNA phosphodiester-bond breaks via an O2-dependent reaction. The reaction was inhibited by mannitol, a hydroxyl radical quencher, but not by superoxide dismutase or catalase, strongly suggesting the involvement of hydroxyl radicals and ruling out participations of superoxide anions or hydrogen peroxide. The •OH signature could indeed be detected by electron spin resonance upon exposure of a solution of sodium selenide to O2. Finally we showed that, in vivo, toxicity strictly depended on the presence of O2. Therefore, by combining genome-wide and biochemical approaches, we demonstrated that, in yeast cells, hydrogen selenide induces toxic DNA breaks through an O2-dependent radical-based mechanism

    (Photo)physical properties of new molecular glasses end-capped with thiophene rings composed of diimide and imine units

    Get PDF
    New symmetrical arylene bisimide derivatives formed by using electron-donating-electron-accepting systems were synthesized. They consist of a phthalic diimide or naphthalenediimide core and imine linkages and are end-capped with thiophene, bithiophene, and (ethylenedioxy)thiophene units. Moreover, polymers were obtained from a new diamine, N,N′-bis(5- aminonaphthalenyl)naphthalene-1,4,5,8-dicarboximide and 2,5- thiophenedicarboxaldehyde or 2,2′-bithiophene-5,5′-dicarboxaldehyde. The prepared azomethine diimides exhibited glass-forming properties. The obtained compounds emitted blue light with the emission maximum at 470 nm. The value of the absorption coefficient was determined as a function of the photon energy using spectroscopic ellipsometry. All compounds are electrochemically active and undergo reversible electrochemical reduction and irreversible oxidation processes as was found in cyclic voltammetry and differential pulse voltammetry (DPV) studies. They exhibited a low electrochemically (DPV) calculated energy band gap (Eg) from 1.14 to 1.70 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels and Eg were additionally calculated theoretically by density functional theory at the B3LYP/6-31G(d,p) level. The photovoltaic properties of two model compounds as the active layer in organic solar cells in the configuration indium tin oxide/poly(3,4-(ethylenedioxy)thiophene):poly(styrenesulfonate)/active layer/Al under an illumination of 1.3 mW/cm2 were studied. The device comprising poly(3-hexylthiophene) with the compound end-capped with bithiophene rings showed the highest value of Voc (above 1 V). The conversion efficiency of the fabricated solar cell was in the range of 0.69-0.90%

    Stress modulation as a means to improve yeasts for lignocellulose bioconversion

    Get PDF
    The second-generation (2G) fermentation environment for lignocellulose conversion presents unique challenges to the fermentative organism that do not necessarily exist in other industrial fermentations. While extreme osmotic, heat, and nutrient starvation stresses are observed in sugar- and starch-based fermentation environments, additional pre-treatment-derived inhibitor stress, potentially exacerbated by stresses such as pH and product tolerance, exist in the 2G environment. Furthermore, in a consolidated bioprocessing (CBP) context, the organism is also challenged to secrete enzymes that may themselves lead to unfolded protein response and other stresses. This review will discuss responses of the yeast Saccharomyces cerevisiae to 2G-specific stresses and stress modulation strategies that can be followed to improve yeasts for this application. We also explore published –omics data and discuss relevant rational engineering, reverse engineering, and adaptation strategies, with the view of identifying genes or alleles that will make positive contributions to the overall robustness of 2G industrial strains

    Apoptosis Preferentially Eliminates Irradiated G 0

    No full text
    corecore