51 research outputs found

    Upward Altitudinal Shifts in Habitat Suitability of Mountain Vipers since the Last Glacial Maximum

    Get PDF
    We determined the effects of past and future climate changes on the distribution of the Montivipera raddei species complex (MRC) that contains rare and endangered viper species limited to Iran, Turkey and Armenia. We also investigated the current distribution of MRC to locate unidentified isolated populations as well as to evaluate the effectiveness of the current network of protected areas for their conservation. Present distribution of MRC was modeled based on ecological variables and model performance was evaluated by field visits. Some individuals at the newly identified populations showed uncommon morphological characteristics. The distribution map of MRC derived through modeling was then compared with the distribution of protected areas in the region. We estimated the effectiveness of the current protected area network to be 10%, which would be sufficient for conserving this group of species, provided adequate management policies and practices are employed. We further modeled the distribution of MRC in the past (21,000 years ago) and under two scenarios in the future (to 2070). These models indicated that climatic changes probably have been responsible for an upward shift in suitable habitats of MRC since the Last Glacial Maximum, leading to isolation of allopatric populations. Distribution will probably become much more restricted in the future as a result of the current rate of global warming. We conclude that climate change most likely played a major role in determining the distribution pattern of MRC, restricting allopatric populations to mountaintops due to habitat alterations. This long-term isolation has facilitated unique local adaptations among MRC populations, which requires further investigation. The suitable habitat patches identified through modeling constitute optimized solutions for inclusion in the network of protected areas in the region

    Desiccation of herpetofauna on roadway exclusion fencing

    Get PDF
    Significant advances have been made to minimize the detrimental effects of roads on wildlife, but little is known about unintended negative consequences of mitigation strategies. Here, we present observations of adverse effects on herpetofauna of exclusion fencing at Presqu’ile Provincial Park, Ontario. A total of 15 individuals (one salamander, nine anurans, and five snakes) were found dead on unburied fencing, apparent victims of desiccation and/or heat exposure. Air temperatures did not differ between days when dead herpetofauna were and were not found on the fence; however, the fence surface was significantly warmer than the air. Our study shows that fence temperature and design may hinder animals escaping from the road to cooler refugia, and we discuss possible solutions

    Measures to reduce population fragmentation by roads: What has worked and how do we know?

    No full text
    Roads impede animal movement, which decreases habitat accessibility and reduces gene flow. Ecopassages have been built to mitigate this but there is little research with which to evaluate their effectiveness, owing to the difficulty in accessing results of existing research; the lack of scientific rigor in these studies; and the low priority of connectivity planning in road projects. In this article, we suggest that the imperative for improving studies of ecopassage effectiveness is that road ecology research should be included from the earliest stages of road projects onwards. This would enable before-after-control-impact (BACI) design research, producing useful information for the particular road project as well as rigorous results for use in future road mitigation. Well-designed studies on ecopassage effectiveness could help improve landscape connectivity even with the increasing number and use by traffic of roads

    Recovery of anuran community diversity following habitat replacement

    No full text
    Recently habitat degradation, road construction and traffic have all increased with human populations, to the detriment of aquatic habitats and species. While numerous restoration programmes have been carried out, there is an urgent need to follow their success to better understand and compensate for the decline of amphibian populations. To this end, we followed the colonization success of an anuran community across multiple replacement ponds created to mitigate large-scale habitat disturbance. Following construction of a highway in western France, a restoration project was initiated in 1999 and the success of restoration efforts was monitored. The amphibian communities of eight ponds were surveyed before they were destroyed. Replacement ponds were created according to precise edaphic criteria, consistent with the old pond characteristics and taking into account the amphibian species present in each. The presence of amphibian species was recorded every year during the breeding period for 4 years following pond creation. Species richness initially declined following construction of the replacement ponds but generally returned to pre-construction levels. Species diversity followed the same pattern but took longer to reach the level of diversity recorded before construction. Pond surface area, depth and sun exposure were the most significant habitat characteristics explaining both amphibian species richness and diversity. Similarly, an increase in the number of vegetation strata was positively related to anuran species richness, indicating the need to maintain a heterogeneous landscape containing relatively large open wetland areas. Synthesis and applications. We highlight the species-specific dynamics of the colonization process, including an increase in the number of replacement ponds inhabited over time by some species and, in some cases, an increase in population size. Our work suggests that successful replacement ponds can be designed around simple habitat features, providing clear benefits for a range of amphibian species, which will have positive cascading effects on local biodiversity. However, consideration must also be given to the terrestrial buffer zone when management strategies are being planned. Finally, our study offers insight into the successful establishment of anuran communities over a relatively short time in restored or replacement aquatic environments. © 2009 The Authors. Journal compilation © 2009 British Ecological Society.NSERC (D.L.), ASF (D.L., T.L.) and the Nordic Centre of Excellence EcoClim project (M.S.F.).Peer Reviewe

    Mitigating reptile road mortality : fence failures compromise ecopassage effectiveness

    No full text
    Roadways pose serious threats to animal populations. The installation of roadway mitigation measures is becoming increasingly common, yet studies that rigorously evaluate the effectiveness of these conservation tools remain rare. A highway expansion project in Ontario, Canada included exclusion fencing and ecopassages as mitigation measures designed to offset detrimental effects to one of the most imperial groups of vertebrates, reptiles. Taking a multispecies approach, we used a Before-After-Control-Impact study design to compare reptile abundance on the highway before and after mitigation at an Impact site and a Control site from 1 May to 31 August in 2012 and 2013. During this time, radio telemetry, wildlife cameras, and an automated PIT-tag reading system were used to monitor reptile movements and use of ecopassages. Additionally, a willingness to utilize experiment was conducted to quantify turtle behavioral responses to ecopassages. We found no difference in abundance of turtles on the road between the un-mitigated and mitigated highways, and an increase in the percentage of both snakes and turtles detected dead on the road post-mitigation, suggesting that the fencing was not effective. Although ecopassages were used by reptiles, the number of crossings through ecopassages was lower than road-surface crossings. Furthermore, turtle willingness to use ecopassages was lower than that reported in previous arena studies, suggesting that effectiveness of ecopassages may be compromised when alternative crossing options are available (e.g., through holes in exclusion structures). Our rigorous evaluation of reptile roadway mitigation demonstrated that when exclusion structures fail, the effectiveness of population connectivity structures is compromised. Our project emphasizes the need to design mitigation measures with the biology and behavior of the target species in mind, to implement mitigation designs in a rigorous fashion, and quantitatively evaluate road mitigation to ensure allow for adaptive management and optimization of these increasingly important conservation tools.15 page(s

    Road mortality potentially responsible for billions of pollinating insect deaths annually

    No full text
    Pollinating insects are vital to the survival of many primary producers in terrestrial ecosystems, as up to 80–85 % of the world’s flowering plants require pollinators for reproduction. Over the last few decades however, numerous pollinating insect populations have declined substantially. The causes of these declines are multifaceted and synergistic, and include pesticides, herbicides, monoculture, urbanization, disease, parasites, and climate change. Here, we present evidence for a generally understudied yet potentially significant source of pollinator mortality, collisions with vehicles. Negative impacts from roads have been observed for the majority of vertebrate groups but studies of the effects on invertebrates have remained largely absent from the scientific literature. We documented road mortality of pollinating insects along a 2 km stretch of highway in Ontario, Canada and used our findings to extrapolate expected levels of road mortality across a number of landscape scales. Our extrapolations demonstrate the potential for loss of hundreds of thousands (on our studied highway) to hundreds of billions (generalised across North America) of Lepidopterans, Hymenopterans and pollinating Dipterans each summer. Our projections of such high levels of annual road mortality highlight the need for research to assess whether the mortality levels observed are contributing to the substantial declines of pollinating insects occurring on a global scale, thus putting the ecological functioning of natural areas and agricultural productivity in jeopardy.7 page(s
    • …
    corecore