151 research outputs found

    Conversion of internal gravity waves into magnetic waves

    Get PDF
    Asteroseismology probes the interiors of stars by studying oscillation modes at a star's surface. Although pulsation spectra are well understood for solar-like oscillators, a substantial fraction of red giant stars observed by Kepler exhibit abnormally low-amplitude dipole oscillation modes. Fuller et al. (2015) suggest this effect is produced by strong core magnetic fields that scatter dipole internal gravity waves (IGWs) into higher multipole IGWs or magnetic waves. In this paper, we study the interaction of IGWs with a magnetic field to test this mechanism. We consider two background stellar structures: one with a uniform magnetic field, and another with a magnetic field that varies both horizontally and vertically. We derive analytic solutions to the wave propagation problem and validate them with numerical simulations. In both cases, we find perfect conversion from IGWs into magnetic waves when the IGWs propagate into a region exceeding a critical magnetic field strength. Downward propagating IGWs cannot reflect into upward propagating IGWs because their vertical wavenumber never approaches zero. Instead, they are converted into upward propagating slow (Alfvénic) waves, and we show they will likely dissipate as they propagate back into weakly magnetized regions. Therefore, strong internal magnetic fields can produce dipole mode suppression in red giants, and gravity modes will likely be totally absent from the pulsation spectra of sufficiently magnetized stars

    Tidally Heated Terrestrial Exoplanets: Viscoelastic Response Models

    Full text link
    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a Hot Earth and Hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid, and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale partial melting, and an analysis of tidal limiting mechanisms such as advective cooling for earthlike planets is discussed. To explore long term behaviors, we map equilibria points between convective heat loss and tidal heat input as functions of eccentricity. For the periods and magnitudes discussed, we show that tidal heating, if significant, is generally detrimental to the width of habitable zones.Comment: 18 pages, 9 figure

    Asteroseismic inference of the near-core magnetic field strength in the main-sequence B star HD 43317

    Get PDF
    About 10 per cent of intermediate- and high-mass dwarf stars are observed to host a strong large-scale magnetic field at their surface, which is thought to be of fossil field origin. However, there are few inferences as to the magnetic field strength and geometry within the deep interiors of stars. Considering that massive stars harbour a convective core whilst on the main sequence, asteroseismology of gravity (g) modes is able to provide constraints on their core masses, yet it has so far not been used to probe the strength of their interior magnetic fields. Here, we use asteroseismology to constrain an upper limit for the magnetic field strength in the near-core region of the pulsating and magnetic B star HD 43317, based on the expected interaction of a magnetic field and its g modes. We find a magnetic field strength of order 5 7 105 G is sufficient to suppress high-radial order g modes and reproduce the observed frequency spectrum of HD 43317, which contains only high-frequency g modes. This result is the first inference of the magnetic field strength inside a main-sequence star

    An efficient tidal dissipation mechanism via stellar magnetic fields

    Full text link
    Recent work suggests that inwardly propagating internal gravity waves (IGWs) within a star can be fully converted to outward magnetic waves (MWs) if they encounter a sufficiently strong magnetic field. The resulting magnetic waves dissipate as they propagate outward to regions with lower Alfv\'{e}n velocity. While tidal forcing is known to excite IGWs, this conversion and subsequent damping of magnetic waves has not been explored as a tidal dissipation mechanism. In particular, stars with sufficiently strong magnetic fields could fully dissipate tidally excited waves, yielding the same tidal evolution as the previously-studied ``travelling wave regime''. Here, we evaluate the viability of this mechanism using stellar models of stars with convective cores (F-type stars in the mass range of 1.21.2-1.6M1.6M_\odot) which were previously thought to be weakly tidally dissipative (due to the absence of nonlinear gravity wave breaking). The criterion for wave conversion to operate is evaluated for each stellar mass using the properties of each star's interior along with estimates of the magnetic field produced by a convective core dynamo under the assumption of equipartition between kinetic (convective) and magnetic energies. Our main result is that this previously unexplored source of efficient tidal dissipation can operate in stars within this mass range for significant fractions of their lifetimes. This tidal dissipation mechanism appears to be consistent with the observed inspiral of WASP-12b, and more generally could play an important role in the orbital evolution of hot Jupiters -- and to lower mass ultra-short period planets -- orbiting F-type stars.Comment: 10 pages, 4 figures, 0 tables, accepted for publication in ApJ Letters on 9th April 202

    Conversion of internal gravity waves into magnetic waves

    Get PDF
    Asteroseismology probes the interiors of stars by studying oscillation modes at a star's surface. Although pulsation spectra are well understood for solar-like oscillators, a substantial fraction of red giant stars observed by Kepler exhibit abnormally low-amplitude dipole oscillation modes. Fuller et al. (2015) suggest this effect is produced by strong core magnetic fields that scatter dipole internal gravity waves (IGWs) into higher multipole IGWs or magnetic waves. In this paper, we study the interaction of IGWs with a magnetic field to test this mechanism. We consider two background stellar structures: one with a uniform magnetic field, and another with a magnetic field that varies both horizontally and vertically. We derive analytic solutions to the wave propagation problem and validate them with numerical simulations. In both cases, we find perfect conversion from IGWs into magnetic waves when the IGWs propagate into a region exceeding a critical magnetic field strength. Downward propagating IGWs cannot reflect into upward propagating IGWs because their vertical wavenumber never approaches zero. Instead, they are converted into upward propagating slow (Alfvénic) waves, and we show they will likely dissipate as they propagate back into weakly magnetized regions. Therefore, strong internal magnetic fields can produce dipole mode suppression in red giants, and gravity modes will likely be totally absent from the pulsation spectra of sufficiently magnetized stars

    The photometric variability of massive stars due to gravity waves excited by core convection

    Full text link
    Massive stars die in catastrophic explosions, which seed the interstellar medium with heavy elements and produce neutron stars and black holes. Predictions of the explosion's character and the remnant mass depend on models of the star's evolutionary history. Models of massive star interiors can be empirically constrained by asteroseismic observations of gravity wave oscillations. Recent photometric observations reveal a ubiquitous red noise signal on massive main sequence stars; a hypothesized source of this noise is gravity waves driven by core convection. We present the first 3D simulations of massive star convection extending from the star's center to near its surface, with realistic stellar luminosities. Using these simulations, we make the first prediction of photometric variability due to convectively-driven gravity waves at the surfaces of massive stars, and find that gravity waves produce photometric variability of a lower amplitude and lower characteristic frequency than the observed red noise. We infer that the photometric signal of gravity waves excited by core convection is below the noise limit of current observations, so the red noise must be generated by an alternative process.Comment: As accepted for publication in Nature Astronomy except for final editorial revisions. Supplemental materials available online at https://doi.org/10.5281/zenodo.7764997 . We have also sonified our results to make them more accessible, see https://github.com/evanhanders/gmode_variability_paper/blob/main/sound/gmode_sonification.pd
    corecore