139 research outputs found

    The pain trajectory of juvenile idiopathic arthritis (JIA): translating from adolescent patient report to behavioural sensitivity in a juvenile animal model

    Get PDF
    Background: While pain is a common symptom in JIA patients, it remains unclear why some JIA patients develop ongoing or persistent pain. Complex clinical and social settings confound analysis of individual factors that may contribute to this pain. To address this, we first undertook a retrospective analysis of pain reports in a JIA patient cohort with the aim of identifying potential factors contributing to persistent pain. We then carried out an experimental laboratory study, using joint inflammatory pain behaviour in rodents, to validate the role of these factors in the onset of persistent pain under controlled conditions. Methods: Patients: Retrospective analysis of anonymised pain visual analogue scale (VAS) scores and accompanying clinical scores from 97 JIA patients aged 13–19 (mean: 16.40 ± 1.21) collected over 50 weeks. Rats: Experimental study of pain behaviour following intra-articular microinjection of complete Freund’s adjuvant (CFA) in adolescents (n = 25) and young adults (n = 43). Some animals (n = 21) had been previously exposed to joint inflammation in infancy or adolescence. Results: Patients: Cluster analysis of patient pain VAS scores revealed three trajectories over 50 weeks: consistently low pain (n = 45), variable pain (n = 30) and persistently high pain (n = 22). Number of actively inflamed joints did not differ in the three groups. High pain at a single visit correlated with greater physician global assessment of disease activity, while a high pain trajectory over 50 weeks was associated with more limited joints but fewer actively inflamed joints. Rats: Rodents administered ankle joint CFA also exhibit low, medium and high joint pain sensitivities, independent of joint inflammation. Prolonged inflammatory pain behaviour was associated with high background pain sensitivity, following joint inflammation at an earlier stage in life. Conclusions: Both JIA patients and rodents differ in their individual pain sensitivity independent of the concurrent joint inflammation. Using experimental animal models allows us to isolate physiological factors underlying these differences, independently of social or clinical factors. The results suggest that a history of prior arthritic activity/joint inflammation may contribute to high pain sensitivity in adolescents with JIA

    Glyceryl trinitrate for the treatment of ischaemic stroke: Determining efficacy in rodent and ovine species for enhanced clinical translation

    Get PDF
    Hypertension is a leading risk factor for death and dependency after ischaemic stroke. However, administering anti-hypertensive medications post-stroke remains contentious with concerns regarding deleterious effects on cerebral blood flow and infarct expansion. This study sought to determine the effect of glyceryl trinitrate (GTN) treatment in both lissencephalic and gyrencephalic pre-clinical stroke models. Merino sheep underwent middle cerebral artery occlusion (MCAO) followed by GTN or control patch administration (0.2 mg/h). Monitoring of numerous physiologically relevant measures over 24 h showed that GTN administration was associated with decreased intracranial pressure, infarct volume, cerebral oedema and midline shift compared to vehicle treatment (p ≤ 0.05). No significant changes in blood pressure or cerebral perfusion pressure were observed. Using optical imaging spectroscopy and laser speckle imaging, the effect of varying doses of GTN (0.69–50 µg/h) on cerebral blood flow and tissue oxygenation was examined in mice. No consistent effect was found. Additional mice undergoing MCAO followed by GTN administration (doses varying from 0–60 µg/h) also showed no improvement in infarct volume or neurological score within 24 h post-stroke. GTN administration significantly improved numerous stroke-related physiological outcomes in sheep but was ineffective in mice. This suggests that, whilst GTN administration could potentially benefit patients, further research into mechanisms of action are required

    A pilot of the feasibility and usefulness of an aged obese model for use in stroke research

    Get PDF
    Background: Animal models of stroke have been criticised as having poor predictive validity, lacking risk factors prevalent in an aging population. This pilot study examined the development of comorbidities in a combined aged and high-fat diet model, and then examined the feasibility of modelling stroke in such rats. Methods: Twelve-month old male Wistar-Han rats (n=15) were fed a 60% fat diet for 8 months during which monthly serial blood samples were taken to assess the development of metabolic syndrome and pro-inflammatory markers. Following this, to pilot the suitability of these rats for undergoing surgical models of stroke, they underwent 30min of middle cerebral artery occlusion (MCAO) alongside younger controls fed a standard diet (n=10). Survival, weight and functional outcome were monitored, and blood vessels and tissues collected for analysis. Results: A high fat diet in aged rats led to substantial obesity. These rats did not develop type 2 diabetes or hypertension. There was thickening of the thoracic arterial wall and vacuole formation in the liver; but of the cytokines examined changes were not seen. MCAO surgery and behavioural assessment was possible in this model (with some caveats discussed in manuscript). Conclusions: This study shows MCAO is possible in aged, obese rats. However, this model is not ideal for recapitulating the complex comorbidities commonly seen in stroke patients

    Bioreactors as engineering support to treat cardiac muscle and vascular disease

    Get PDF
    Cardiovascular disease is the leading cause of morbidity and mortality in the Western World. The inability of fully differentiated, load-bearing cardiovascular tissues to in vivo regenerate and the limitations of the current treatment therapies greatly motivate the efforts of cardiovascular tissue engineering to become an effective clinical strategy for injured heart and vessels. For the effective production of organized and functional cardiovascular engineered constructs in vitro, a suitable dynamic environment is essential, and can be achieved and maintained within bioreactors. Bioreactors are technological devices that, while monitoring and controlling the culture environment and stimulating the construct, attempt to mimic the physiological milieu. In this study, a review of the current state of the art of bioreactor solutions for cardiovascular tissue engineering is presented, with emphasis on bioreactors and biophysical stimuli adopted for investigating the mechanisms influencing cardiovascular tissue development, and for eventually generating suitable cardiovascular tissue replacements

    Shattered pellet injection experiments at JET in support of the ITER disruption mitigation system design

    Get PDF
    A series of experiments have been executed at JET to assess the efficacy of the newly installed shattered pellet injection (SPI) system in mitigating the effects of disruptions. Issues, important for the ITER disruption mitigation system, such as thermal load mitigation, avoidance of runaway electron (RE) formation, radiation asymmetries during thermal quench mitigation, electromagnetic load control and RE energy dissipation have been addressed over a large parameter range. The efficiency of the mitigation has been examined for the various SPI injection strategies. The paper summarises the results from these JET SPI experiments and discusses their implications for the ITER disruption mitigation scheme

    A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors

    Get PDF

    New H-mode regimes with small ELMs and high thermal confinement in the Joint European Torus

    Get PDF
    New H-mode regimes with high confinement, low core impurity accumulation, and small edge-localized mode perturbations have been obtained in magnetically confined plasmas at the Joint European Torus tokamak. Such regimes are achieved by means of optimized particle fueling conditions at high input power, current, and magnetic field, which lead to a self-organized state with a strong increase in rotation and ion temperature and a decrease in the edge density. An interplay between core and edge plasma regions leads to reduced turbulence levels and outward impurity convection. These results pave the way to an attractive alternative to the standard plasmas considered for fusion energy generation in a tokamak with a metallic wall environment such as the ones expected in ITER.& nbsp;Published under an exclusive license by AIP Publishing

    Overview of JET results for optimising ITER operation

    Get PDF
    The JET 2019–2020 scientific and technological programme exploited the results of years of concerted scientific and engineering work, including the ITER-like wall (ILW: Be wall and W divertor) installed in 2010, improved diagnostic capabilities now fully available, a major neutral beam injection upgrade providing record power in 2019–2020, and tested the technical and procedural preparation for safe operation with tritium. Research along three complementary axes yielded a wealth of new results. Firstly, the JET plasma programme delivered scenarios suitable for high fusion power and alpha particle (α) physics in the coming D–T campaign (DTE2), with record sustained neutron rates, as well as plasmas for clarifying the impact of isotope mass on plasma core, edge and plasma-wall interactions, and for ITER pre-fusion power operation. The efficacy of the newly installed shattered pellet injector for mitigating disruption forces and runaway electrons was demonstrated. Secondly, research on the consequences of long-term exposure to JET-ILW plasma was completed, with emphasis on wall damage and fuel retention, and with analyses of wall materials and dust particles that will help validate assumptions and codes for design and operation of ITER and DEMO. Thirdly, the nuclear technology programme aiming to deliver maximum technological return from operations in D, T and D–T benefited from the highest D–D neutron yield in years, securing results for validating radiation transport and activation codes, and nuclear data for ITER
    corecore