9,416 research outputs found

    Assessing self-responsibility in employability competencies development among Australian engineering students: introductory report

    Get PDF
    Self-responsibility study initially outlined the importance of ‘self-directed Adult learning’ either as the method or the outcome of education. Attention was given to the different interest of individual’s in accepting responsibility for their professional development. In this regard, several sources reveal the need for learners to take their own responsibility for developing employability competencies development. However, the concern must be expressed at the incompleteness of research into the personal responsibility for competency development

    Dynamic allometry in coastal overwash morphology

    Get PDF
    Allometry refers to a physical principle in which geometric (and/or metabolic) characteristics of an object or organism are correlated to its size. Allometric scaling relationships typically manifest as power laws. In geomorphic contexts, scaling relationships are a quantitative signature of organization, structure, or regularity in a landscape, even if the mechanistic processes responsible for creating such a pattern are unclear. Despite the ubiquity and variety of scaling relationships in physical landscapes, the emergence and development of these relationships tend to be difficult to observe - either because the spatial and/or temporal scales over which they evolve are so great or because the conditions that drive them are so dangerous (e.g. an extreme hazard event). Here, we use a physical experiment to examine dynamic allometry in overwash morphology along a model coastal barrier. We document the emergence of a canonical scaling law for length versus area in overwash deposits (washover). Comparing the experimental features, formed during a single forcing event, to 5 decades of change in real washover morphology from the Ria Formosa barrier system, in southern Portugal, we find differences between patterns of morphometric change at the event scale versus longer timescales. Our results may help inform and test process-based coastal morphodynamic models, which typically use statistical distributions and scaling laws to underpin empirical or semi-empirical parameters at fundamental levels of model architecture. More broadly, this work dovetails with theory for landscape evolution more commonly associated with fluvial and alluvial terrain, offering new evidence from a coastal setting that a landscape may reflect characteristics associated with an equilibrium or steady-state condition even when features within that landscape do not.Funding Agency NERC Natural Environment Research Council NE/N015665/2 Leverhulme Trust RPG-2018-282info:eu-repo/semantics/publishedVersio

    City of Tigard and Takings Law

    Get PDF
    10 pages. Contains 1 page of references

    City of Tigard and Takings Law

    Get PDF
    10 pages. Contains 1 page of references

    Arthroscopic transosseous rotator cuff repair: A prospective study on cost savings, surgical time, and outcomes

    Get PDF
    Objectives: Health expenditures in the United States are outpacing national income, and affordability has become a major policy issue. Over 500,000 rotator cuff repairs (RCR) are performed annually in the United States making RCR a potential source of cost savings. Arthroscopic trans-osseous equivalent (TOE) repair using a double row of anchors has shown superior biomechanical strength compared to other techniques, but at a higher cost. The arthroscopic transosseous (TO) repair is a novel technique allowing arthroscopic rotator cuff repair to be performed without suture anchors. Arthroscopic TO repair may be a means to provide similarly excellent patient outcomes while lowering the cost of care. The primary purpose is to compare the price differential and time of surgery for an arthroscopic rotator cuff repair using anchorless TO repair verses an anchor trans-osseous equivalent (TOE) repair. A secondary purpose of the study was to evaluate outcomes at 6 months postoperatively. Methods: A prospective, case-controlled study evaluating arthroscopic rotator cuff repair using two techniques was performed. The study group consisting of 21 patients undergoing TO repair was compared to a control group consisting of 22 patients undergoing TOE repair. The groups were controlled for size of tear, biceps treatment, acromioplasty, distal clavicle excision, and labral pathology. The primary outcome measures were surgical time as well as total cost of implants and equipment for each surgery, determined by an independent third party, Atlanticare Hospital. Secondary outcomes were changes in the SST, VAS, and SANE scores. Results: Mean total surgical implant/equipment cost per procedure for TOE repair was 2348.03(SD490.30)andforTOrepairwas2348.03 (SD 490.30) and for TO repair was 1204.97 (SD 330.69; p\u3c0.0001). Mean cut to close time for TOE repair was 85 minutes (95% CI is 77-90) verses 74 (95% CI = 71-98) for TO repair. A log rank test revealed no difference in time (p =0.95). A linear regression model was developed to evaluate the change in SST, VAS, and SANE scores from pre-op to 6 months follow-up. Our study was underpowered but no difference in outcome was observed. Conclusion: Arthroscopic TO rotator cuff repair is a cost savings and time neutral technique compared to TOE repair. A mean of $1100 can be saved in surgical cost per case. In a country that performs over 500,000 RCRs annually, utilizing a TO repair technique can provide substantial cost savings to the healthcare system. © The Author(s) 2015

    The Micropaleontological Reference Centers Network

    Get PDF

    Deceleration of the solar wind in the Earth foreshock region: ISEE 2 and IMP 8 observations

    Get PDF
    The deceleration of the solar wind in the region of the interplanetary space filled by ions backstreaming from the Earth bow shock was studied using a two spacecraft technique. This deceleration, which is correlated with the "diffuse" but not with the "reflected" ion population, depends on the solar wind bulk velocity: at low velocities (below 300 km/sec) the velocity decrease is about 5 km/sec, while at higher velocities (above 400 km/sec) the decrease may be as large as 30 km/sec. Along with this deceleration, the solar wind undergoes a deflection of about 1 deg away from the direction of the Earth bow shock. The energy balance shows that the kinetic energy loss far exceeds the thermal energy which is possibly gained by the solar wind, therefore, at least part of this energy must go into waves and/or into the backstreaming ions
    • …
    corecore