29 research outputs found

    Orbital character effects in the photon energy and polarization dependence of pure C60 photoemission

    Get PDF
    Recent direct experimental observation of multiple highly-dispersive C60_{60} valence bands has allowed for a detailed analysis of the unique photoemission traits of these features through photon energy- and polarization-dependent measurements. Previously obscured dispersions and strong photoemission traits are now revealed by specific light polarizations. The observed intensity effects prove the locking in place of the C60_{60} molecules at low temperatures and the existence of an orientational order imposed by the substrate chosen. Most importantly, photon energy- and polarization-dependent effects are shown to be intimately linked with the orbital character of the C60_{60} band manifolds which allows for a more precise determination of the orbital character within the HOMO-2. Our observations and analysis provide important considerations for the connection between molecular and crystalline C60_{60} electronic structure, past and future band structure studies, and for increasingly popular C60_{60} electronic device applications, especially those making use of heterostructures

    Linearly dispersive bands at the onset of correlations in Kx_xC60_{60} films

    Full text link
    Molecular crystals are a flexible platform to induce novel electronic phases. Due to the weak forces between molecules, intermolecular distances can be varied over relatively larger ranges than interatomic distances in atomic crystals. On the other hand, the hopping terms are generally small, which results in narrow bands, strong correlations and heavy electrons. Here, by growing Kx_xC60_{60} fullerides on hexagonal layered Bi2_2Se3_3, we show that upon doping the series undergoes a Mott transition from a molecular insulator to a correlated metal, and an in-gap state evolves into highly dispersive Dirac-like fermions at half filling, where superconductivity occurs. This picture challenges the commonly accepted description of the low energy quasiparticles as appearing from a gradual electron doping of the conduction states, and suggests an intriguing parallel with the more famous family of the cuprate superconductors. More in general, it indicates that molecular crystals offer a viable route to engineer electron-electron interactions.Comment: 5 pages, 4 figures. Accepted at Physical Review Researc

    Embodied imitation-enhanced reinforcement learning in multi-agent systems

    Get PDF
    Imitation is an example of social learning in which an individual observes and copies another's actions. This paper presents a new method for using imitation as a way of enhancing the learning speed of individual agents that employ a well-known reinforcement learning algorithm, namely Q-learning. Compared with other research that uses imitation with reinforcement learning, our method uses imitation of purely observed behaviours to enhance learning, with no internal state access or sharing of experiences between agents. The paper evaluates our imitation-enhanced reinforcement learning approach in both simulation and with real robots in continuous space. Both simulation and real robot experimental results show that the learning speed of the group is improved. © The Author(s) 2013

    Towards Rapid Multi-robot Learning from Demonstration at the RoboCup Competition

    Full text link
    Abstract. We describe our previous and current efforts towards achiev-ing an unusual personal RoboCup goal: to train a full team of robots directly through demonstration, on the field of play at the RoboCup venue, how to collaboratively play soccer, and then use this trained team in the competition itself. Using our method, HiTAB, we can train teams of collaborative agents via demonstration to perform nontrivial joint behaviors in the form of hierarchical finite-state automata. We discuss HiTAB, our previous efforts in using it in RoboCup 2011 and 2012, recent experimental work, and our current efforts for 2014, then suggest a new RoboCup Technical Challenge problem in learning from demonstration. Imagine that you are at an unfamiliar disaster site with a team of robots, and are faced with a previously unseen task for them to do. The robots have only rudimentary but useful utility behaviors implemented. You are not a programmer. Without coding them, you have only a few hours to get your robots doing useful collaborative work in this new environment. How would you do this
    corecore