205 research outputs found

    A Latent Parameter Node-Centric Model for Spatial Networks

    Get PDF
    Spatial networks, in which nodes and edges are embedded in space, play a vital role in the study of complex systems. For example, many social networks attach geo-location information to each user, allowing the study of not only topological interactions between users, but spatial interactions as well. The defining property of spatial networks is that edge distances are associated with a cost, which may subtly influence the topology of the network. However, the cost function over distance is rarely known, thus developing a model of connections in spatial networks is a difficult task. In this paper, we introduce a novel model for capturing the interaction between spatial effects and network structure. Our approach represents a unique combination of ideas from latent variable statistical models and spatial network modeling. In contrast to previous work, we view the ability to form long/short-distance connections to be dependent on the individual nodes involved. For example, a node's specific surroundings (e.g. network structure and node density) may make it more likely to form a long distance link than other nodes with the same degree. To capture this information, we attach a latent variable to each node which represents a node's spatial reach. These variables are inferred from the network structure using a Markov Chain Monte Carlo algorithm. We experimentally evaluate our proposed model on 4 different types of real-world spatial networks (e.g. transportation, biological, infrastructure, and social). We apply our model to the task of link prediction and achieve up to a 35% improvement over previous approaches in terms of the area under the ROC curve. Additionally, we show that our model is particularly helpful for predicting links between nodes with low degrees. In these cases, we see much larger improvements over previous models

    Indications for liver transplantation in the cyclosporine era

    Get PDF
    One hundred seventy orthotopic liver transplants were performed under conventional immunosuppression with azathioprine and steroids with 1- and 5-year survivals of 32.9% and 20.0%, respectively. Since the introduction of cyclosporine-prednisone therapy in March 1980, 313 primary orthotopic liver transplants have been performed. Actuarial survivals at 1 and 5 years have improved to 69.7% and 62.8%, respectively. Biliary atresia is now the most common indication for liver replacement. In adults, primary biliary cirrhosis and sclerosing cholangitis have become more common indications for transplantation, and alcoholic cirrhosis and primary liver malignancy as indications have declined. Early enthusiasm for liver transplantation in patients with hepatic cancer has been tempered by the finding that recurrence is both common and rapid. An increasing number of patients with inborn errors of metabolism originating in the liver are receiving transplants, including patients with Wilson's disease, tyrosinemia, alpha-1-antitrypsin deficiency, glycogen storage disease, familial hypercholesterolemia, and hemochromatosis. Survival in this group of patients has been excellent (74.4% at 1 and 5 years). A hemophiliac who received a transplant for postnecrotic cirrhosis has survived and may have been cured of his hemophilia. About 20% of patients require retransplantation for rejection, technical failure, or primary graft failure. Only 4 of the patients receiving retransplants under conventional immunosuppression survived beyond 6 months, and all died within 14 months of retransplantation. Sixty-eight patients have received retransplants under cyclosporine-prednisone. Thirty-one patients are surviving, all for at least 1 year. Six of the 12 patients requiring a third transplant are alive 2 to 3 years after the primary operation. An aggressive approach to retransplantation in the patient with a failed graft is justified

    Dietary magnesium, not calcium, prevents vascular calcification in a mouse model for pseudoxanthoma elasticum

    Get PDF
    Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by ectopic calcification of connective tissue in skin, Bruch’s membrane of the eye, and walls of blood vessels. PXE is caused by mutations in the ABCC6 gene, but the exact etiology is still unknown. While observations on patients suggest that high calcium intake worsens the clinical symptoms, the patient organization PXE International has published the dietary advice to increase calcium intake in combination with increased magnesium intake. To obtain more data on this controversial issue, we examined the effect of dietary calcium and magnesium in the Abcc6−/− mouse, a PXE mouse model which mimics the clinical features of PXE. Abcc6−/− mice were placed on specific diets for 3, 7, and 12 months. Disease severity was measured by quantifying calcification of blood vessels in the kidney. Raising the calcium content in the diet from 0.5% to 2% did not change disease severity. In contrast, simultaneous increase of both calcium (from 0.5% to 2.0%) and magnesium (from 0.05% to 0.2%) slowed down the calcification significantly. Our present findings that increase in dietary magnesium reduces vascular calcification in a mouse model for PXE should stimulate further studies to establish a dietary intervention for PXE

    Spontaneous DNA damage to the nuclear genome promotes senescence,redox imbalance and aging

    Get PDF
    Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/Δ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/Δ and aged WT mice. Chronic treatment of Ercc1-/Δ mice with the mitochondrial-targeted radical scavenger XJB-5–131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline

    Spontaneous DNA damage to the nuclear genome promotes senescence, T redox imbalance and aging

    Get PDF
    Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that observed in old WT mice. Surprisingly, levels of reactive oxygen species (ROS) were increased in tissues of Ercc1-/Δ mice to an extent identical to naturally-aged WT mice. Increased enzymatic production of ROS and decreased antioxidants contributed to the elevation in oxidative stress in both Ercc1-/Δ and aged WT mice. Chronic treatment of Ercc1-/Δ mice with the mitochondrial-targeted radical scavenger XJB-5–131 attenuated oxidative DNA damage, senescence and age-related pathology. Our findings indicate that nuclear genotoxic stress arises, at least in part, due to mitochondrial-derived ROS, and this spontaneous DNA damage is sufficient to drive increased levels of ROS, cellular senescence, and the consequent age-related physiological decline

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore