1,159 research outputs found

    Humor Works in Funny Ways: Examining Satirical Tone as a Key Determinant in Political Humor Message Processing

    Get PDF
    This multi-experiment study builds upon extant political entertainment theory, testing whether satire type (horatian versus juvenalian) cues varying processing mechanisms (message discounting versus resource allocation), and if consequential differences to argument scrutiny levels or message persuasiveness result. Using novel stimuli (e.g., animated cartoons, study one) and real-world late-night political satire (The Daily Show and The Colbert Report, study two), results suggest that satire type was a key antecedent in political humor message processing. Additionally, the varying mechanisms had differential effects on political argument scrutiny levels and message persuasiveness

    Assessing Patient Preferences for Communication Companions in Primary Care

    Get PDF
    Introduction: Adults with communication impairments encounter obstacles in accessing high quality healthcare. While having a companion accompany a patient during clinic visits is a potential solution, the literature suggests that the efficacy of this strategy remains unclear. We sought to determine patient preferences regarding the roles of a communication companion and other approaches to overcoming communication challenges. Methods: The Patient-Provider-Companion survey was provided to adult primary care patients during check-in at five urban and rural practices in northern Vermont. The survey offered a checklist of options regarding the roles a companion may play to improve communication during a visit, including active roles such as speaking for the patient, or more passive roles such as taking notes. Other questions assessed how best to communicate health information after a visit. All responses were collected anonymously and analyzed using descriptive statistics. Results: Of the 179 survey respondents, the mean age was 55 (range 19-94), with 65% women. Eleven percent of respondents brought a companion to the visit, and the most highly endorsed companion roles were: “helping understand what the doctor says or means” (63%), and “prompt or remind to ask questions” (68%). Additionally, 105 patients provided their preferences for healthcare communication: 50% wanted key takeaways at the end of the visit, and 46% wanted time to summarize back what they heard. Fewer than 10% requested specific aids such as use of a clear mask or an amplifier. Among the 46 respondents who endorsed a method of keeping family up to date, the most common preference was to “read notes and instructions via the patient portal” (77%). Conclusions: Patient accompaniment to a primary care visit is common. Among accompanied patients, we identified preference for the roles a companion may play, which included strategies to help the patient understand as well as help with being understood. Asynchronous communication through the patient portal to the medical record is highly endorsed and deserves further exploration as an option for patients with communication disabilities. Bringing a companion and using the patient portal are customizable, patient-centered strategies that can be appropriate for people with unique and overlapping communication disabilities

    Scaling migrations to communities: An empirical case of migration network in the Arctic

    Get PDF
    Seasonal migrants transport energy, nutrients, contaminants, parasites and diseases, while also connecting distant food webs between communities and ecosystems, which contributes to structuring meta-communities and meta-ecosystems. However, we currently lack a framework to characterize the structure of the spatial connections maintained by all migratory species reproducing or wintering in a given community. Here, we use a network approach to represent and characterize migratory pathways at the community level and provide an empirical description of this pattern from a High-Arctic terrestrial community. We define community migration networks as multipartite networks representing different biogeographic regions connected with a focal community through the seasonal movements of its migratory species. We focus on the Bylot Island High-Arctic terrestrial community, a summer breeding ground for several migratory species. We define the non-breeding range of each species using tracking devices, or range maps refined by flyways and habitat types. We show that the migratory species breeding on Bylot Island are found across hundreds of ecoregions on several continents during the non-breeding period and present a low spatial overlap. The migratory species are divided into groups associated with different sets of ecoregions. The non-random structure observed in our empirical community migration network suggests evolutionary and geographic constraints as well as ecological factors act to shape migrations at the community level. Overall, our study provides a simple and generalizable framework as a starting point to better integrate migrations at the community level. Our framework is a far-reaching tool that could be adapted to address the seasonal transport of energy, contaminants, parasites and diseases in ecosystems, as well as trophic interactions in communities with migratory species

    Submillimeter mapping and analysis of cold dust condensations in the Orion M42 star forming complex

    Get PDF
    We present here the continuum submillimeter maps of the molecular cloud around the M42 Nebula in the Orion region. These have been obtained in four wavelength bands (200, 260, 360 and 580 microns) with the ProNaOS two meter balloon-borne telescope. The area covered is 7 parsecs wide (50 arcmin at a distance of 470 pc) with a spatial resolution of about 0.4 parsec. Thanks to the high sensitivity to faint surface brightness gradients, we have found several cold condensations with temperatures ranging from 12 to 17 K, within 3 parsecs of the dense ridge. The statistical analysis of the temperature and spectral index spatial distribution shows an evidence of an inverse correlation between these two parameters. Being invisible in the IRAS 100 micron survey, some cold clouds are likely to be the seeds for future star formation activity going on in the complex. We estimate their masses and we show that two of them have masses higher than their Jeans masses, and may be gravitationally unstable.Comment: 4 figures, The Astrophysical Journal, Main Journal, in pres

    On model selection forecasting, Dark Energy and modified gravity

    Get PDF
    The Fisher matrix approach (Fisher 1935) allows one to calculate in advance how well a given experiment will be able to estimate model parameters, and has been an invaluable tool in experimental design. In the same spirit, we present here a method to predict how well a given experiment can distinguish between different models, regardless of their parameters. From a Bayesian viewpoint, this involves computation of the Bayesian evidence. In this paper, we generalise the Fisher matrix approach from the context of parameter fitting to that of model testing, and show how the expected evidence can be computed under the same simplifying assumption of a gaussian likelihood as the Fisher matrix approach for parameter estimation. With this `Laplace approximation' all that is needed to compute the expected evidence is the Fisher matrix itself. We illustrate the method with a study of how well upcoming and planned experiments should perform at distinguishing between Dark Energy models and modified gravity theories. In particular we consider the combination of 3D weak lensing, for which planned and proposed wide-field multi-band imaging surveys will provide suitable data, and probes of the expansion history of the Universe, such as proposed supernova and baryonic acoustic oscillations surveys. We find that proposed large-scale weak lensing surveys from space should be able readily to distinguish General Relativity from modified gravity models.Comment: 6 pages, 2 figure

    Serial protein crystallography in an electron microscope

    Get PDF
    Serial X-ray crystallography at free-electron lasers allows to solve biomolecular structures from sub-micron-sized crystals. However, beam time at these facilities is scarce, and involved sample delivery techniques are required. On the other hand, rotation electron diffraction (MicroED) has shown great potential as an alternative means for protein nano-crystallography. Here, we present a method for serial electron diffraction of protein nanocrystals combining the benefits of both approaches. In a scanning transmission electron microscope, crystals randomly dispersed on a sample grid are automatically mapped, and a diffraction pattern at fixed orientation is recorded from each at a high acquisition rate. Dose fractionation ensures minimal radiation damage effects. We demonstrate the method by solving the structure of granulovirus occlusion bodies and lysozyme to resolutions of 1.55 Å and 1.80 Å, respectively. Our method promises to provide rapid structure determination for many classes of materials with minimal sample consumption, using readily available instrumentation

    Switching the stereochemical outcome of 6-endo-trig cyclizations; Synthesis of 2,6-Cis-6-substituted 4-oxopipecolic acids

    Get PDF
    A base-mediated 6-endo-trig cyclization of readily accessible enone-derived α-amino acids has been developed for the direct synthesis of novel 2,6-cis-6- substituted-4-oxo-L-pipecolic acids. A range of aliphatic and aryl side chains were tolerated by this mild procedure to give the target compounds in good overall yields. Molecular modeling of the 6-endo-trig cyclization allowed some insight as to how these compounds were formed, with the enolate intermediate generated via an equilibrium process, followed by irreversible tautomerization/neutralization providing the driving force for product formation. Stereoselective reduction and deprotection of the resulting 2,6-cis-6-substituted 4-oxo-L-pipecolic acids to the corresponding 4-hydroxy-L-pipecolic acids was also performed

    ACBAR: The Arcminute Cosmology Bolometer Array Receiver

    Full text link
    We describe the Arcminute Cosmology Bolometer Array Receiver (ACBAR); a multifrequency millimeter-wave receiver designed for observations of the Cosmic Microwave Background (CMB) and the Sunyaev-Zel'dovich effect in clusters of galaxies. The ACBAR focal plane consists of a 16-pixel, background-limited, 240 mK bolometer array that can be configured to observe simultaneously at 150, 220, 280, and 350 GHz. With 4-5' FWHM Gaussian beam sizes and a 3 degree azimuth chop, ACBAR is sensitive to a wide range of angular scales. ACBAR was installed on the 2 m Viper telescope at the South Pole in January 2001. We describe the design of the instrument and its performance during the 2001 and 2002 observing seasons.Comment: 59 pages, 16 figures -- updated to reflect version published in ApJ
    • 

    corecore