28 research outputs found

    Macromolecular Fingerprinting of Sulfolobus Species in Biofilm: A Transcriptomic and Proteomic Approach Combined with Spectroscopic Analysis

    Get PDF
    Microorganisms in nature often live in surfaceassociated sessile communities, encased in a self-produced matrix, referred to as biofilms. Biofilms have been well studied in bacteria but in a limited way for archaea. We have recently characterized biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus, and S. tokodaii. These strains form different communities ranging from simple carpet structures in S. solfataricus to high density tower-like structures in S. acidocaldarius under static condition. Here, we combine spectroscopic, proteomic, and transcriptomic analyses to describe physiological and regulatory features associated with biofilms. Spectroscopic analysis reveals that in comparison to planktonic life-style, biofilm life-style has distinctive influence on the physiology of each Sulfolobus spp. Proteomic and transcriptomic data show that biofilm-forming life-style is strain specific (eg ca. 15% of the S. acidocaldarius genes were differently expressed, S. solfataricus and S. tokodaii had ∼3.4 and ∼1%, respectively). The -omic data showed that regulated ORFs were widely distributed in basic cellular functions, including surface modifications. Several regulated genes are common to biofilm-forming cells in all three species. One of the most striking common response genes include putative Lrs14-like transcriptional regulators, indicating their possible roles as a key regulatory factor in biofilm development

    Correction of factor IX deficiency in mice by embryonic stem cells differentiated in vitro

    Get PDF
    Murine embryonic stem (ES) cells are pluripotent, but significant functional engraftment does not occur when they are introduced into the liver. However, here we demonstrate that functional liver engraftment does occur if the ES cells (from strain 129 mice) are first differentiated in vitro for 7 days in the presence of FGF. Strikingly, when these differentiated cells, termed putative endodermal precursors (PEPs), were injected into their livers, two of six C57BL/6 and four of eight BALB/c factor IX (F-IX)-deficient mice survived for >7 days, even though the recipients were of a different strain and, in the case of the BALB/c recipients, had a complete MHC mismatch. F-IX was detected in all six of the PEP-injected survivors. Two mice subsequently died of causes unrelated to F-IX; the others survived until death at 38 or 115 days after the transplantation. No uninjected control F-IX-deficient mice survived for >7 days. Large confluent regions of sinusoidal PEP engraftment were demonstrated by immunofluorescence in the long-term BALB/c survivors. The PEP engraftment was not associated with detectable cell fusion, and the transplantation was accompanied with only a low incidence of teratoma formation

    Serum leptin concentrations in children with mild protein-energy malnutrition and catch-up growth

    No full text
    Background: The aim of the present study was to clarify the relationship between changing nutritional anthropometric data and serum leptin concentrations during the catch-up growth process in children
    corecore