224 research outputs found
Rheology of water and ammonia-water ices
Creep experiments on fine-grained water and ammonia-water ices have been performed at one atmosphere and high confining pressure in order to develop constitutive relationships necessary to model tectonic processes and interpret surface features of icy moons of the outer solar system. The present series of experiments explores the effects of temperature, strain rate, grain size, and melt fraction on creep strength. In general, creep strength decreases with increasing temperature, decreasing strain rate, and increasing melt fraction. A transition from dislocation creep to diffusion creep occurs at finer grain sizes, higher temperatures, and lower strain rates
0-pi Josephson tunnel junctions with ferromagnetic barrier
We fabricated high quality Nb/Al_2O_3/Ni_{0.6}Cu_{0.4}/Nb
superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions.
Using a ferromagnetic layer with a step-like thickness, we obtain a 0-pi
junction, with equal lengths and critical currents of 0 and pi parts. The
ground state of our 330 microns (1.3 lambda_J) long junction corresponds to a
spontaneous vortex of supercurrent pinned at the 0-pi step and carrying ~6.7%
of the magnetic flux quantum Phi_0. The dependence of the critical current on
the applied magnetic field shows a clear minimum in the vicinity of zero field.Comment: submitted to PR
High quality ferromagnetic 0 and pi Josephson tunnel junctions
We fabricated high quality \Nb/\Al_2\O_3/\Ni_{0.6}\Cu_{0.4}/\Nb
superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions.
Depending on the thickness of the ferromagnetic \Ni_{0.6}\Cu_{0.4} layer and
on the ambient temperature, the junctions were in the 0 or ground state.
All junctions have homogeneous interfaces showing almost perfect Fraunhofer
patterns. The \Al_2\O_3 tunnel barrier allows to achieve rather low damping,
which is desired for many experiments especially in the quantum domain. The
McCumber parameter increases exponentially with decreasing
temperature and reaches at . The critical
current density in the state was up to at , resulting in a Josephson penetration depth as low as
. Experimentally determined junction parameters are well
described by theory taking into account spin-flip scattering in the
\Ni_{0.6}\Cu_{0.4} layer and different transparencies of the interfaces.Comment: Changed content and Corrected typo
Experimental evidence of a {\phi} Josephson junction
We demonstrate experimentally the existence of Josephson junctions having a
doubly degenerate ground state with an average Josephson phase \psi=\pm{\phi}.
The value of {\phi} can be chosen by design in the interval 0<{\phi}<\pi. The
junctions used in our experiments are fabricated as 0-{\pi} Josephson junctions
of moderate normalized length with asymmetric 0 and {\pi} regions. We show that
(a) these {\phi} Josephson junctions have two critical currents, corresponding
to the escape of the phase {\psi} from -{\phi} and +{\phi} states; (b) the
phase {\psi} can be set to a particular state by tuning an external magnetic
field or (c) by using a proper bias current sweep sequence. The experimental
observations are in agreement with previous theoretical predictions
Theoretical current-voltage characteristics of ferroelectric tunnel junctions
We present the concept of ferroelectric tunnel junctions (FTJs). These
junctions consist of two metal electrodes separated by a nanometer-thick
ferroelectric barrier. The current-voltage characteristics of FTJs are analyzed
under the assumption that the direct electron tunneling represents the dominant
conduction mechanism. First, the influence of converse piezoelectric effect
inherent in ferroelectric materials on the tunnel current is described. The
calculations show that the lattice strains of piezoelectric origin modify the
current-voltage relationship owing to strain-induced changes of the barrier
thickness, electron effective mass, and position of the conduction-band edge.
Remarkably, the conductance minimum becomes shifted from zero voltage due to
the piezoelectric effect, and a strain-related resistive switching takes place
after the polarization reversal in a ferroelectric barrier. Second, we analyze
the influence of the internal electric field arising due to imperfect screening
of polarization charges by electrons in metal electrodes. It is shown that, for
asymmetric FTJs, this depolarizing-field effect also leads to a considerable
change of the barrier resistance after the polarization reversal. However, the
symmetry of the resulting current-voltage loop is different from that
characteristic of the strain-related resistive switching. The crossover from
one to another type of the hysteretic curve, which accompanies the increase of
FTJ asymmetry, is described taking into account both the strain and
depolarizing-field effects. It is noted that asymmetric FTJs with dissimilar
top and bottom electrodes are preferable for the non-volatile memory
applications because of a larger resistance on/off ratio.Comment: 14 pages, 8 figure
Velocity Distributions of Granular Gases with Drag and with Long-Range Interactions
We study velocity statistics of electrostatically driven granular gases. For
two different experiments: (i) non-magnetic particles in a viscous fluid and
(ii) magnetic particles in air, the velocity distribution is non-Maxwellian,
and its high-energy tail is exponential, P(v) ~ exp(-|v|). This behavior is
consistent with kinetic theory of driven dissipative particles. For particles
immersed in a fluid, viscous damping is responsible for the exponential tail,
while for magnetic particles, long-range interactions cause the exponential
tail. We conclude that velocity statistics of dissipative gases are sensitive
to the fluid environment and to the form of the particle interaction.Comment: 4 pages, 3 figure
Magnetic interference patterns in 0-Pi SIFS Josephson junctions: effects of asymmetry between 0 and Pi regions
We present a detailed analysis of the dependence of the critical current I_c
on the magnetic field B of 0, Pi, and 0-Pi
superconductor-insulator-ferromagnet-superconductor Josephson junctions. I_c(B)
of the 0 and Pi junction closely follows a Fraunhofer pattern, indicating a
homogeneous critical current density j_c(x). The maximum of I_c(B) is slightly
shifted along the field axis, pointing to a small remanent in-plane
magnetization of the F-layer along the field axis. I_c(B) of the 0-Pi junction
exhibits the characteristic central minimum. I_c however has a finite value
here, due to an asymmetry of j_c in the 0 and Pi part. In addition, this I_c(B)
exhibits asymmetric maxima and bumped minima. To explain these features in
detail, flux penetration being different in the 0 part and the Pi part needs to
be taken into account. We discuss this asymmetry in relation to the magnetic
properties of the F-layer and the fabrication technique used to produce the
0-Pi junctions
A subgrain‐size piezometer calibrated for EBSD
We calibrate a subgrain‐size piezometer using electron backscatter diffraction (EBSD) data collected from experimentally deformed samples of olivine and quartz. Systematic analyses of angular and spatial resolution test the suitability of each dataset for inclusion in calibration of the subgrain‐size piezometer. To identify subgrain boundaries, we consider a range of critical misorientation angles and conclude that a 1° threshold provides the optimal piezometric calibration. The mean line‐intercept length, equivalent to the subgrain‐size, is found to be inversely proportional to the von Mises equivalent stress for datasets both with and without the Holyoke and Kronenberg (2010) correction. These new piezometers provide stress estimates from EBSD analyses of polymineralic rocks without the need to discriminate between relict and recrystallised grains and therefore greatly increase the range of rocks that may be used to constrain geodynamic models
A ferroelectric memristor
Memristors are continuously tunable resistors that emulate synapses.
Conceptualized in the 1970s, they traditionally operate by voltage-induced
displacements of matter, but the mechanism remains controversial. Purely
electronic memristors have recently emerged based on well-established physical
phenomena with albeit modest resistance changes. Here we demonstrate that
voltage-controlled domain configurations in ferroelectric tunnel barriers yield
memristive behaviour with resistance variations exceeding two orders of
magnitude and a 10 ns operation speed. Using models of ferroelectric-domain
nucleation and growth we explain the quasi-continuous resistance variations and
derive a simple analytical expression for the memristive effect. Our results
suggest new opportunities for ferroelectrics as the hardware basis of future
neuromorphic computational architectures
- …