635 research outputs found
Fractal Dimensions of Confined Clusters in Two-Dimensional Directed Percolation
The fractal structure of directed percolation clusters, grown at the
percolation threshold inside parabolic-like systems, is studied in two
dimensions via Monte Carlo simulations. With a free surface at y=\pm Cx^k and a
dynamical exponent z, the surface shape is a relevant perturbation when k<1/z
and the fractal dimensions of the anisotropic clusters vary continuously with
k. Analytic expressions for these variations are obtained using a blob picture
approach.Comment: 6 pages, Plain TeX file, epsf, 3 postscript-figure
Secure exchange of information by synchronization of neural networks
A connection between the theory of neural networks and cryptography is
presented. A new phenomenon, namely synchronization of neural networks is
leading to a new method of exchange of secret messages. Numerical simulations
show that two artificial networks being trained by Hebbian learning rule on
their mutual outputs develop an antiparallel state of their synaptic weights.
The synchronized weights are used to construct an ephemeral key exchange
protocol for a secure transmission of secret data. It is shown that an opponent
who knows the protocol and all details of any transmission of the data has no
chance to decrypt the secret message, since tracking the weights is a hard
problem compared to synchronization. The complexity of the generation of the
secure channel is linear with the size of the network.Comment: 11 pages, 5 figure
Training a perceptron in a discrete weight space
On-line and batch learning of a perceptron in a discrete weight space, where
each weight can take different values, are examined analytically and
numerically. The learning algorithm is based on the training of the continuous
perceptron and prediction following the clipped weights. The learning is
described by a new set of order parameters, composed of the overlaps between
the teacher and the continuous/clipped students. Different scenarios are
examined among them on-line learning with discrete/continuous transfer
functions and off-line Hebb learning. The generalization error of the clipped
weights decays asymptotically as / in the case of on-line learning with binary/continuous activation
functions, respectively, where is the number of examples divided by N,
the size of the input vector and is a positive constant that decays
linearly with 1/L. For finite and , a perfect agreement between the
discrete student and the teacher is obtained for . A crossover to the generalization error ,
characterized continuous weights with binary output, is obtained for synaptic
depth .Comment: 10 pages, 5 figs., submitted to PR
Nonlocal mechanism for cluster synchronization in neural circuits
The interplay between the topology of cortical circuits and synchronized
activity modes in distinct cortical areas is a key enigma in neuroscience. We
present a new nonlocal mechanism governing the periodic activity mode: the
greatest common divisor (GCD) of network loops. For a stimulus to one node, the
network splits into GCD-clusters in which cluster neurons are in zero-lag
synchronization. For complex external stimuli, the number of clusters can be
any common divisor. The synchronized mode and the transients to synchronization
pinpoint the type of external stimuli. The findings, supported by an
information mixing argument and simulations of Hodgkin Huxley population
dynamic networks with unidirectional connectivity and synaptic noise, call for
reexamining sources of correlated activity in cortex and shorter information
processing time scales.Comment: 8 pges, 6 figure
Synchronization and directed percolation in coupled map lattices
We study a synchronization mechanism, based on one-way coupling of
all-or-nothing type, applied to coupled map lattices with several different
local rules. By analyzing the metric and the topological distance between the
two systems, we found two different regimes: a strong chaos phase in which the
transition has a directed percolation character and a weak chaos phase in which
the synchronization transition occurs abruptly. We are able to derive some
analytical approximations for the location of the transition point and the
critical properties of the system.
We propose to use the characteristics of this transition as indicators of the
spatial propagation of chaoticity.Comment: 12 pages + 12 figure
Transient dynamics for sequence processing neural networks: effect of degree distributions
We derive a analytic evolution equation for overlap parameters including the
effect of degree distribution on the transient dynamics of sequence processing
neural networks. In the special case of globally coupled networks, the
precisely retrieved critical loading ratio is obtained,
where is the network size. In the presence of random networks, our
theoretical predictions agree quantitatively with the numerical experiments for
delta, binomial, and power-law degree distributions.Comment: 11 pages, 6 figure
Crossover Scaling Functions in One Dimensional Dynamic Growth Models
The crossover from Edwards-Wilkinson () to KPZ () type growth is
studied for the BCSOS model. We calculate the exact numerical values for the
and massgap for using the master equation. We predict
the structure of the crossover scaling function and confirm numerically that
and , with . KPZ type growth is
equivalent to a phase transition in meso-scopic metallic rings where attractive
interactions destroy the persistent current; and to endpoints of facet-ridges
in equilibrium crystal shapes.Comment: 11 pages, TeX, figures upon reques
Derivation of Hebb's rule
On the basis of the general form for the energy needed to adapt the
connection strengths of a network in which learning takes place, a local
learning rule is found for the changes of the weights. This biologically
realizable learning rule turns out to comply with Hebb's neuro-physiological
postulate, but is not of the form of any of the learning rules proposed in the
literature.
It is shown that, if a finite set of the same patterns is presented over and
over again to the network, the weights of the synapses converge to finite
values.
Furthermore, it is proved that the final values found in this biologically
realizable limit are the same as those found via a mathematical approach to the
problem of finding the weights of a partially connected neural network that can
store a collection of patterns. The mathematical solution is obtained via a
modified version of the so-called method of the pseudo-inverse, and has the
inverse of a reduced correlation matrix, rather than the usual correlation
matrix, as its basic ingredient. Thus, a biological network might realize the
final results of the mathematician by the energetically economic rule for the
adaption of the synapses found in this article.Comment: 29 pages, LaTeX, 3 figure
Analysis of CDMA systems that are characterized by eigenvalue spectrum
An approach by which to analyze the performance of the code division multiple
access (CDMA) scheme, which is a core technology used in modern wireless
communication systems, is provided. The approach characterizes the objective
system by the eigenvalue spectrum of a cross-correlation matrix composed of
signature sequences used in CDMA communication, which enables us to handle a
wider class of CDMA systems beyond the basic model reported by Tanaka. The
utility of the novel scheme is shown by analyzing a system in which the
generation of signature sequences is designed for enhancing the orthogonality.Comment: 7 pages, 2 figure
The triangular Ising antiferromagnet in a staggered field
We study the equilibrium properties of the nearest-neighbor Ising
antiferromagnet on a triangular lattice in the presence of a staggered field
conjugate to one of the degenerate ground states. Using a mapping of the ground
states of the model without the staggered field to dimer coverings on the dual
lattice, we classify the ground states into sectors specified by the number of
``strings''. We show that the effect of the staggered field is to generate
long-range interactions between strings. In the limiting case of the
antiferromagnetic coupling constant J becoming infinitely large, we prove the
existence of a phase transition in this system and obtain a finite lower bound
for the transition temperature. For finite J, we study the equilibrium
properties of the system using Monte Carlo simulations with three different
dynamics. We find that in all the three cases, equilibration times for low
field values increase rapidly with system size at low temperatures. Due to this
difficulty in equilibrating sufficiently large systems at low temperatures, our
finite-size scaling analysis of the numerical results does not permit a
definite conclusion about the existence of a phase transition for finite values
of J. A surprising feature in the system is the fact that unlike usual glassy
systems, a zero-temperature quench almost always leads to the ground state,
while a slow cooling does not.Comment: 12 pages, 18 figures: To appear in Phys. Rev.
- …
