6,174 research outputs found

    Status of Superconducting RF Linac Development for APT

    Get PDF
    This paper describes the development progress of high current superconducting RF linacs in Los Alamos, performed to support a design of the linac for the APT (Accelerator Production of Tritium) Project. The APT linac design includes a CW superconducting RF high energy section, spanning an energy range of 211 to 1030 MeV, and operating at a frequency of 700 MHz with two constant beta sections (beta of 0.64 and 0.82). In the last two years, we have progressed towards build a cryomodule with beta of 0.64. We completed the designs of the 5 cell superconducting cavities and the 210 kW power couplers. We are scheduled to begin assembly of the cryomodule in September 2000. In this paper, we present an overview of the status of our development efforts and a report on the results of the cavity and coupler test program.Comment: LINAC2000 THD1

    Caltech Faint Field Galaxy Redshift Survey IX: Source detection and photometry in the Hubble Deep Field Region

    Get PDF
    Detection and photometry of sources in the U_n, G, R, and K_s bands in a 9x9 arcmin^2 region of the sky, centered on the Hubble Deep Field, are described. The data permit construction of complete photometric catalogs to roughly U_n=25, G=26, R=25.5 and K_s=20 mag, and significant photometric measurements somewhat fainter. The galaxy number density is 1.3x10^5 deg^{-2} to R=25.0 mag. Galaxy number counts have slopes dlog N/dm=0.42, 0.33, 0.27 and 0.31 in the U_n, G, R and K_s bands, consistent with previous studies and the trend that fainter galaxies are, on average, bluer. Galaxy catalogs selected in the R and K_s bands are presented, containing 3607 and 488 sources, in field areas of 74.8 and 59.4 arcmin^2, to R=25.5 and and K_s=20 mag.Comment: Accepted for publication in ApJS; some tables and slightly nicer figures available at http://www.sns.ias.edu/~hogg/deep

    Grids of Stellar Models and Frequencies with CLES + LOSC

    Full text link
    We present a grid of stellar models, obtained with the CLES evolution code, following the specification of ESTA-Task1, and the corresponfing seismic properties, computed with the LOSC code. We provide a complete description of the corresponding files that will be available on the ESTA web-pages.Comment: 8 pages, accepted for publication in Astrophys. Space Sci. (CoRoT/ESTA Volume

    The Spitzer Space Telescope Mission

    Full text link
    The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy, was launched 2003 August 25 and is returning excellent scientific data from its Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity achievable with a cryogenic telescope in space with the great imaging and spectroscopic power of modern detector arrays to provide the user community with huge gains in capability for exploration of the cosmos in the infrared. The observatory systems are largely performing as expected and the projected cryogenic lifetime is in excess of 5 years. This paper summarizes the on-orbit scientific, technical and operational performance of Spitzer. Subsequent papers in this special issue describe the Spitzer instruments in detail and highlight many of the exciting scientific results obtained during the first six months of the Spitzer mission.Comment: Accepted for publication in the Astrophyscial Journal Supplement Spitzer Special Issue, 22 pages, 3 figures. Higher resolution versions of the figures are available at http://ssc.spitzer.caltech.edu/pubs/journal2004.htm

    Mapping the column density and dust temperature structure of IRDCs with Herschel

    Get PDF
    Infrared dark clouds (IRDCs) are cold and dense reservoirs of gas potentially available to form stars. Many of these clouds are likely to be pristine structures representing the initial conditions for star formation. The study presented here aims to construct and analyze accurate column density and dust temperature maps of IRDCs by using the first Herschel data from the Hi-GAL galactic plane survey. These fundamental quantities, are essential for understanding processes such as fragmentation in the early stages of the formation of stars in molecular clouds. We have developed a simple pixel-by-pixel SED fitting method, which accounts for the background emission. By fitting a grey-body function at each position, we recover the spatial variations in both the dust column density and temperature within the IRDCs. This method is applied to a sample of 22 IRDCs exhibiting a range of angular sizes and peak column densities. Our analysis shows that the dust temperature decreases significantly within IRDCs, from background temperatures of 20-30 K to minimum temperatures of 8-15 K within the clouds, showing that dense molecular clouds are not isothermal. Temperature gradients have most likely an important impact on the fragmentation of IRDCs. Local temperature minima are strongly correlated with column density peaks, which in a few cases reach NH2 = 1 x 10^{23} cm^{-2}, identifying these clouds as candidate massive prestellar cores. Applying this technique to the full Hi-GAL data set will provide important constraints on the fragmentation and thermal properties of IRDCs, and help identify hundreds of massive prestellar core candidates.Comment: Accepted for publication in A&A Herschel special issu

    Big data in economics: evolution or revolution?

    Get PDF
    The Big Data Era creates a lot of exciting opportunities for new developments in economics and econometrics. At the same time, however, the analysis of large datasets poses difficult methodological problems that should be addressed appropriately and are the subject of the present chapter
    corecore