6,174 research outputs found
Status of Superconducting RF Linac Development for APT
This paper describes the development progress of high current superconducting
RF linacs in Los Alamos, performed to support a design of the linac for the APT
(Accelerator Production of Tritium) Project. The APT linac design includes a CW
superconducting RF high energy section, spanning an energy range of 211 to 1030
MeV, and operating at a frequency of 700 MHz with two constant beta sections
(beta of 0.64 and 0.82). In the last two years, we have progressed towards
build a cryomodule with beta of 0.64. We completed the designs of the 5 cell
superconducting cavities and the 210 kW power couplers. We are scheduled to
begin assembly of the cryomodule in September 2000. In this paper, we present
an overview of the status of our development efforts and a report on the
results of the cavity and coupler test program.Comment: LINAC2000 THD1
Caltech Faint Field Galaxy Redshift Survey IX: Source detection and photometry in the Hubble Deep Field Region
Detection and photometry of sources in the U_n, G, R, and K_s bands in a 9x9
arcmin^2 region of the sky, centered on the Hubble Deep Field, are described.
The data permit construction of complete photometric catalogs to roughly
U_n=25, G=26, R=25.5 and K_s=20 mag, and significant photometric measurements
somewhat fainter. The galaxy number density is 1.3x10^5 deg^{-2} to R=25.0 mag.
Galaxy number counts have slopes dlog N/dm=0.42, 0.33, 0.27 and 0.31 in the
U_n, G, R and K_s bands, consistent with previous studies and the trend that
fainter galaxies are, on average, bluer. Galaxy catalogs selected in the R and
K_s bands are presented, containing 3607 and 488 sources, in field areas of
74.8 and 59.4 arcmin^2, to R=25.5 and and K_s=20 mag.Comment: Accepted for publication in ApJS; some tables and slightly nicer
figures available at http://www.sns.ias.edu/~hogg/deep
Recommended from our members
Scientific rationale of a Saturn probe mission
We describe the main scientific goals to be addressed by future in situ exploration of Saturn
Grids of Stellar Models and Frequencies with CLES + LOSC
We present a grid of stellar models, obtained with the CLES evolution code,
following the specification of ESTA-Task1, and the corresponfing seismic
properties, computed with the LOSC code. We provide a complete description of
the corresponding files that will be available on the ESTA web-pages.Comment: 8 pages, accepted for publication in Astrophys. Space Sci.
(CoRoT/ESTA Volume
The Spitzer Space Telescope Mission
The Spitzer Space Telescope, NASA's Great Observatory for infrared astronomy,
was launched 2003 August 25 and is returning excellent scientific data from its
Earth-trailing solar orbit. Spitzer combines the intrinsic sensitivity
achievable with a cryogenic telescope in space with the great imaging and
spectroscopic power of modern detector arrays to provide the user community
with huge gains in capability for exploration of the cosmos in the infrared.
The observatory systems are largely performing as expected and the projected
cryogenic lifetime is in excess of 5 years. This paper summarizes the on-orbit
scientific, technical and operational performance of Spitzer. Subsequent papers
in this special issue describe the Spitzer instruments in detail and highlight
many of the exciting scientific results obtained during the first six months of
the Spitzer mission.Comment: Accepted for publication in the Astrophyscial Journal Supplement
Spitzer Special Issue, 22 pages, 3 figures. Higher resolution versions of the
figures are available at http://ssc.spitzer.caltech.edu/pubs/journal2004.htm
Mapping the column density and dust temperature structure of IRDCs with Herschel
Infrared dark clouds (IRDCs) are cold and dense reservoirs of gas potentially
available to form stars. Many of these clouds are likely to be pristine
structures representing the initial conditions for star formation. The study
presented here aims to construct and analyze accurate column density and dust
temperature maps of IRDCs by using the first Herschel data from the Hi-GAL
galactic plane survey. These fundamental quantities, are essential for
understanding processes such as fragmentation in the early stages of the
formation of stars in molecular clouds. We have developed a simple
pixel-by-pixel SED fitting method, which accounts for the background emission.
By fitting a grey-body function at each position, we recover the spatial
variations in both the dust column density and temperature within the IRDCs.
This method is applied to a sample of 22 IRDCs exhibiting a range of angular
sizes and peak column densities. Our analysis shows that the dust temperature
decreases significantly within IRDCs, from background temperatures of 20-30 K
to minimum temperatures of 8-15 K within the clouds, showing that dense
molecular clouds are not isothermal. Temperature gradients have most likely an
important impact on the fragmentation of IRDCs. Local temperature minima are
strongly correlated with column density peaks, which in a few cases reach NH2 =
1 x 10^{23} cm^{-2}, identifying these clouds as candidate massive prestellar
cores. Applying this technique to the full Hi-GAL data set will provide
important constraints on the fragmentation and thermal properties of IRDCs, and
help identify hundreds of massive prestellar core candidates.Comment: Accepted for publication in A&A Herschel special issu
Big data in economics: evolution or revolution?
The Big Data Era creates a lot of exciting opportunities for new developments in economics and econometrics. At the same time, however, the analysis of large datasets poses difficult methodological problems that should be addressed
appropriately and are the subject of the present chapter
- …
