6,231 research outputs found
The profile of an emission line from relativistic outflows around a black hole
Recent observations show strong evidence for the presence of Doppler-shifted
emission lines in the spectrum of both black hole candidates and active
galactic nuclei. These lines are likely to originate from relativistic outflows
(or jets) in the vicinity of the central black hole. Consequently, the profile
of such a line should be distorted by strong gravitational effects near the
black hole, as well as special relativistic effects. In this paper, we present
results from a detailed study on how each process affects the observed line
profile. We found that the profile is sensitive to the intrinsic properties of
the jets (Lorentz factor, velocity profile, and emissivity law), as well as to
the spin of the black hole and the viewing angle (with respect to the axis of
the jets). More specifically, in the case of approaching jets, an intrisically
narrow line (blue-shifted) is seen as simply broadened at small viewing angles,
but it shows a doubly peaked profile at large viewing angles for extreme Kerr
black holes (due to the combination of gravitational focusing and Doppler
effects); the profile is always singly peaked for Schwarzschild black holes.
For receding jets, however, the line profile becomes quite complicated owing to
complicated photon trajectories. To facilitate comparison with observations, we
searched a large parameter space to derive representative line profiles. We
show the results and discuss how to use emission lines as a potential tool for
probing the inner region of a black hole jet system.Comment: 16 pages in emulateapj style, 11 figure
Role of material properties and mesostructure on dynamic deformation and shear instability in Al-W granular composites
Dynamic experiments with Al-W granular/porous composites revealed
qualitatively different behavior with respect to shear localization depending
on bonding between Al particles. Two-dimensional numerical modeling was used to
explore the mesomechanics of the large strain dynamic deformation in Al-W
granular/porous composites and explain the experimentally observed differences
in shear localization between composites with various mesostructures.
Specifically, the bonding between the Al particles, the porosity, the roles of
the relative particle sizes of Al and W, the arrangements of the W particles,
and the material properties of Al were investigated using numerical
calculations. It was demonstrated in simulations that the bonding between the
"soft" Al particles facilitated shear localization as seen in the experiments.
Numerical calculations and experiments revealed that the mechanism of the shear
localization in granular composites is mainly due to the local high strain flow
of "soft" Al around the "rigid" W particles causing localized damage
accumulation and subsequent growth of the meso/macro shear bands/cracks. The
"rigid" W particles were the major geometrical factor determining the
initiation and propagation of "kinked" shear bands in the matrix of "soft" Al
particles, leaving some areas free of extensive plastic deformation as observed
in experiments and numerical calculations.Comment: 10 pages, 14 figures, submitted to Journal of Applied Physic
Modulating the neural bases of persuasion: why/how, gain/loss, and users/non-users
Designing persuasive content is challenging, in part because people can be poor predictors of their actions. Medial prefrontal cortex (MPFC) activation during message exposure reliably predicts downstream behavior, but past work has been largely atheoretical. We replicated past results on this relationship and tested two additional framing effects known to alter message receptivity. First, we examined gain- vs. loss-framed reasons for a health behavior (sunscreen use). Consistent with predictions from prospect theory, we observed greater MPFC activity to gain- vs. loss-framed messages, and this activity was associated with behavior. This relationship was stronger for those who were not previously sunscreen users. Second, building on theories of action planning, we compared neural activity during messages regarding how vs. why to enact the behavior. We observed rostral inferior parietal lobule and posterior inferior frontal gyrus activity during action planning (“how” messages), and this activity was associated with behavior; this is in contrast to the relationship between MPFC activity during the “why” (i.e., gain and loss) messages and behavior. These results reinforce that persuasion occurs in part via self-value integration—seeing value and incorporating persuasive messages into one\u27s self-concept—and extend this work to demonstrate how message framing and action planning may influence this process
Binding interface change and cryptic variation in the evolution of protein-protein interactions
Background:Physical interactions between proteins are essential for almost all biological functions and systems. To understand the evolution of function it is therefore important to understand the evolution of molecular interactions. Of key importance is the evolution of binding specificity, the set of interactions made by a protein, since change in specificity can lead to “rewiring” of interaction networks. Unfortunately, the interfaces through which proteins interact are complex, typically containing many amino-acid residues that collectively must contribute to binding specificity as well as binding affinity, structural integrity of the interface and solubility in the unbound state. Results: In order to study the relationship between interface composition and binding specificity, we make use of paralogous pairs of yeast proteins. Immediately after duplication these paralogues will have identical sequences and protein products that make an identical set of interactions. As the sequences diverge, we can correlate amino-acid change in the interface with any change in the specificity of binding. We show that change in interface regions correlates only weakly with change in specificity, and many variants in interfaces are functionally equivalent. We show that many of the residue replacements within interfaces are silent with respect to their contribution to binding specificity. Conclusions: We conclude that such functionally-equivalent change has the potential to contribute to evolutionary plasticity in interfaces by creating cryptic variation, which in turn may provide the raw material for functional innovation and coevolution.BBSRCWellcome Trust Institutional Strategic Support Awar
Nonlinear transport of Bose-Einstein condensates through mesoscopic waveguides
We study the coherent flow of interacting Bose-condensed atoms in mesoscopic
waveguide geometries. Analytical and numerical methods, based on the mean-field
description of the condensate, are developed to study both stationary as well
as time-dependent propagation processes. We apply these methods to the
propagation of a condensate through an atomic quantum dot in a waveguide,
discuss the nonlinear transmission spectrum and show that resonant transport is
generally suppressed due to an interaction-induced bistability phenomenon.
Finally, we establish a link between the nonlinear features of the transmission
spectrum and the self-consistent quasi-bound states of the quantum dot.Comment: 23 pages, 16 figure
Symmetry-preserving discrete schemes for some heat transfer equations
Lie group analysis of differential equations is a generally recognized
method, which provides invariant solutions, integrability, conservation laws
etc. In this paper we present three characteristic examples of the construction
of invariant difference equations and meshes, where the original continuous
symmetries are preserved in discrete models. Conservation of symmetries in
difference modeling helps to retain qualitative properties of the differential
equations in their difference counterparts.Comment: 21 pages, 4 ps figure
Guaranteed clustering and biclustering via semidefinite programming
Identifying clusters of similar objects in data plays a significant role in a
wide range of applications. As a model problem for clustering, we consider the
densest k-disjoint-clique problem, whose goal is to identify the collection of
k disjoint cliques of a given weighted complete graph maximizing the sum of the
densities of the complete subgraphs induced by these cliques. In this paper, we
establish conditions ensuring exact recovery of the densest k cliques of a
given graph from the optimal solution of a particular semidefinite program. In
particular, the semidefinite relaxation is exact for input graphs corresponding
to data consisting of k large, distinct clusters and a smaller number of
outliers. This approach also yields a semidefinite relaxation for the
biclustering problem with similar recovery guarantees. Given a set of objects
and a set of features exhibited by these objects, biclustering seeks to
simultaneously group the objects and features according to their expression
levels. This problem may be posed as partitioning the nodes of a weighted
bipartite complete graph such that the sum of the densities of the resulting
bipartite complete subgraphs is maximized. As in our analysis of the densest
k-disjoint-clique problem, we show that the correct partition of the objects
and features can be recovered from the optimal solution of a semidefinite
program in the case that the given data consists of several disjoint sets of
objects exhibiting similar features. Empirical evidence from numerical
experiments supporting these theoretical guarantees is also provided
A Functional Near Infrared Spectroscopy (fNIRS) Replication of the Sunscreen Persuasion Paradigm
Activity in medial prefrontal cortex (mPFC) during persuasive messages predicts future message-consistent behavior change, but there are significant limitations to the types of persuasion processes that can be invoked inside an MRI scanner. For instance, real world persuasion often involves multiple people in conversation. Functional near infrared spectroscopy (fNIRS) allows us to move out of the scanner and into more ecologically valid contexts. As a first step, the current study used fNIRS to replicate an existing fMRI persuasion paradigm (i.e. the sunscreen paradigm) to determine if mPFC shows similar predictive value with this technology. Consistent with prior fMRI work, activity in mPFC was significantly associated with message-consistent behavior change, above and beyond self-reported intentions. There was also a difference in this association between previous users and non-users of sunscreen. Activity differences based on messages characteristics were not observed. Finally, activity in a region of right dorsolateral PFC (dlPFC), which has been observed with counterarguing against persuasive messages, correlated negatively with future behavior. The current results suggest it is reasonable to use fNIRS to examine persuasion paradigms that go beyond what is possible in the MRI scanner environment
Interactions of asbestos-activated macrophages with an experimental fibrosarcoma
Supernatants from in vivo asbestos-activated macrophages failed to show any cytostatic activity against a syngeneic fibrosarcoma cell line in vitro. UICC chrysotile-induced peritoneal exudate cells also failed to demonstrate any growth inhibitory effect on the same cells in Winn assays of tumor growth. Mixing UICC crocidolite with inoculated tumor cells resulted in a dose-dependent inhibition of tumor growth; this could, however, be explained by a direct cytostatic effect on the tumor cells of high doses of crocidolite, which was observed in vitro
First Penning-trap mass measurement in the millisecond half-life range: the exotic halo nucleus 11Li
In this letter, we report a new mass for Li using the trapping
experiment TITAN at TRIUMF's ISAC facility. This is by far the shortest-lived
nuclide, , for which a mass measurement has ever been
performed with a Penning trap. Combined with our mass measurements of
Li we derive a new two-neutron separation energy of 369.15(65) keV: a
factor of seven more precise than the best previous value. This new value is a
critical ingredient for the determination of the halo charge radius from
isotope-shift measurements. We also report results from state-of-the-art
atomic-physics calculations using the new mass and extract a new charge radius
for Li. This result is a remarkable confluence of nuclear and atomic
physics.Comment: Formatted for submission to PR
- …