38,806 research outputs found
Exact Holography of the Mass-deformed M2-brane Theory
We test the holographic relation between the vacuum expectation values of
gauge invariant operators in mass-deformed ABJM theory and the LLM geometries with
orbifold in 11-dimensional supergravity. To do that, we apply
the Kaluza-Klein reduction to construct a 4-dimensional gravity theory and
implement the holographic renormalization procedure. We obtain an exact
holographic relation for the vacuum expectation values of the chiral primary
operator with conformal dimension , which is given by , for large and
. Here factor is independent of . Our results involve
infinite number of exact dual relations for all possible supersymmetric Higgs
vacua and so provide a nontrivial test of gauge/gravity duality away from the
conformal fixed point. We also extend our results to the case of for
LLM geometries represented by rectangular-shaped Young-diagrams.Comment: 6 pages, major corrections in section 3 and 4, references added,
title change
Gravity from Entanglement and RG Flow in a Top-down Approach
The duality between a -dimensional conformal field theory with relevant
deformation and a gravity theory on an asymptotically AdS geometry, has
become a suitable tool in the investigation of the emergence of gravity from
quantum entanglement in field theory. Recently, we have tested the duality
between the mass-deformed ABJM theory and asymptotically AdS gravity
theory, which is obtained from the KK reduction of the 11-dimensional
supergravity on the LLM geometry. In this paper, we extend the KK reduction
procedure beyond the linear order and establish non-trivial KK maps between
4-dimensional fields and 11-dimensional fluctuations. We rely on this
gauge/gravity duality to calculate the entanglement entropy by using the
Ryu-Takayanagi holographic formula and the path integral method developed by
Faulkner. We show that the entanglement entropies obtained using these two
methods agree when the asymptotically AdS metric satisfies the linearized
Einstein equation with nonvanishing energy-momentum tensor for two scalar
fields. These scalar fields encode the information of the relevant deformation
of the ABJM theory. This confirms that the asymptotic limit of LLM geometry is
the emergent gravity of the quantum entanglement in the mass-deformed ABJM
theory with a small mass parameter. We also comment on the issue of the
relative entropy and the Fisher information in our setup.Comment: 42 pages, no figure, minor corrections, references adde
Hedging Diffusion Processes by Local Risk-Minimisation with Applications to Index Tracking
The solution to the problem of hedging contingent claims by local risk-minimisation has been considered in detail in Follmer and Sondermann (1986), Follmer and Schweizer (1991) and Schweizer (1991). However, given a stochastic process Xt and tau1 tau2, the strategy that is locally risk-minimising for Xtau1 is in general not locally risk-minimising for Xtau2. In the case of diffusion processes, this paper considers the problem of determining a strategy that is simultaneously locally risk-minimising for Xtau for all tau. That is, a strategy that is locally risk-minimising for the entire process Xt. The necessary and sufficient conditions under which this is possible are obtained, and applied to the problem of index tracking. In particular, a close connection between the local risk-minimising and the tracking error variance minimising strategies for index tracking is established, and leads to a simple criterion for the selection of optimal set of assets from which to form a tracker portfolio, as well as a value-at-risk type measure for the set of assets used.minimal martingale measure; local risk-minimisation; hedging; incomplete market; index tracking; portfolio selection
Supersymmetric Effective Action of D2-branes in Massive IIA String Theory
We obtain a new-type of Yang-Mills Chern-Simons theory from the
Mukhi-Papageorgakis Higgsing of the Gaiotto-Tomasiello theory.
This theory has BPS fuzzy funnel solution which is expressed in
terms of the seven generators of SU(3), excluding . We propose that this
is an effective theory of multiple D2-branes with D6- and D8-branes background
in massive IIA string theory.Comment: 22 pages, positive definite form of potential is added, some comments
are change
Structure of Stochastic Dynamics near Fixed Points
We analyze the structure of stochastic dynamics near either a stable or
unstable fixed point, where force can be approximated by linearization. We find
that a cost function that determines a Boltzmann-like stationary distribution
can always be defined near it. Such a stationary distribution does not need to
satisfy the usual detailed balance condition, but might have instead a
divergence-free probability current. In the linear case the force can be split
into two parts, one of which gives detailed balance with the diffusive motion,
while the other induces cyclic motion on surfaces of constant cost function.
Using the Jordan transformation for the force matrix, we find an explicit
construction of the cost function. We discuss singularities of the
transformation and their consequences for the stationary distribution. This
Boltzmann-like distribution may be not unique, and nonlinear effects and
boundary conditions may change the distribution and induce additional currents
even in the neighborhood of a fixed point.Comment: 7 page
Thermal activation energy of 3D vortex matter in NaFe1-xCoxAs (x=0.01, 0.03 and 0.07) single crystals
We report on the thermally activated flux flow dependency on the doping
dependent mixed state in NaFe1-xCoxAs (x=0.01, 0.03, and 0.07) crystals using
the magnetoresistivity in the case of B//c-axis and B//ab-plane. It was found
clearly that irrespective of the doping ratio, magnetoresistivity showed a
distinct tail just above the Tc, offset associated with the thermally activated
flux flow (TAFF) in our crystals. Furthermore, in TAFF region the temperature
dependence of the activation energy follows the relation U(T, B)=U_0 (B)
(1-T/T_c )^q with q=1.5 in all studied crystals. The magnetic field dependence
of the activation energy follows a power law of U_0 (B)~B^(-{\alpha}) where the
exponent {\alpha} is changed from a low value to a high value at a crossover
field of B=~2T, indicating the transition from collective to plastic pinning in
the crystals. Finally, it is suggested that the 3D vortex phase is the dominant
phase in the low-temperature region as compared to the TAFF region in our
series samples
Recommended from our members
Evaluating the Diversity of Emergency Medicine Foundation (EMF) Grant Recipients in the Last Decade
On behalf of the ACEP Research CommitteeIntroduction: To study diversity of researchers and barriers to success among Emergency Medicine Foundation (EMF) grant recipients in the last 10 years.Methods: EMF grant awardees were approached to complete a brief survey, which included demographics, queries related to contributions to the literature, success in obtaining grants, and any perceived barriers they encountered.Results: Of the 342 researchers contacted by email, a total of 147 completed the survey for a response rate of 43%. The respondents were predominately mid to late career white-male-heterosexual-Christian with an average age of 44 years (range 25-69 years of age). With regards to training and education, the majority of respondents (50%) were either Associate or Professor clinical rank (8% instructor/resident/fellow and 31% Assistant). Sixty-two percent of the respondents reported perceived barriers to career advancement since completion of residency. The largest perceived barrier to success was medical specialty (26%), followed by gender (21%) and age (16%).Conclusion: Our survey of EMF grant recipients in the last 10 years shows a considerable lack of diversity. The most commonly perceived barriers to career advancement by this cohort were medical specialty, gender, and age. An opportunity exists for further definition of barriers and development of mechanisms to overcome them, with a goal of increased success for those that are underrepresented.
- …
