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Ex ante randomization in agency models 

John C. Fellingham* 

Young K. Kwon** 

and 

D. Paul Newman* 

We consider how a principal can use randomized strategies in designing optimal contracts 
in agency settings. We distinguish between ex post randomization (overfee schedulesfollowing 
act selection by the agent) and ex ante randomization (overfee schedules before act selection). 
We show that ex ante randomization may be efficient in both full information and private 
information settings under certain assumptions regarding preferences and the production 
technology. It is particularly significant that additive separability and concavity ofthe agent's 
utility function as well as concavity of the production function do not rule out efficient 
ex ante randomized contracts in private information settings, although, as is known, they 
rule out ex post randomization. 

1. Introduction 

* Agency theory has provided considerable insights into the nature of optimal contracts 
in a variety of settings. The simplest agency model typically involves two individuals: a 
principal and an agent. The principal delegates responsibility and, perhaps, resources to 
the agent, who by act selection influences a stochastic process generating an outcome, 
usually monetary, which is shared by both actors. The agent has often been characterized 
as selecting an effort level that interacts with nature to determine the outcome. The agency 
problem arises because the interests of the agent and the principal do not coincide. The 
principal attempts to structure a sharing rule that both motivates the agent and shares risk. 

Of course, the sharing arrangement is a function of, at most, jointly observable variables. 
If the principal can observe either the act or the state (along with the outcome), incentive 
problems can be avoided and optimal risk sharing can be achieved. (See Shavell (1979).) 
This is typically described as thefull information solution. On the other hand, if the principal 
can observe only the outcome, optimal (first-best) contracts cannot be written (under 
reasonable conditions, such as agent risk aversion and constant probability support over 
outcomes), because of the confounding of effort and state. Inducing the agent to select a 
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desirable action requires suboptimal risk sharing. This constrained optimum will be termed 
the private information solution. 

The nature of the contract, or sharing rule, has been investigated under a variety of 
conditions. (See, for example, Harris and Raviv (1979) and Demski and Feltham (1978).) 
In the private information case, the contractual form requires some risk bearing by the 
agent (since the fee schedule depends on the outcome), even though the principal may be 
risk neutral. Thus, the agent is induced to select a desirable act. Holmstrom (1979) proves 
a very important result for this case. Suppose an additional signal (beyond outcome) is 
available for contracting purposes. Holmstrom shows that, where the agent's preferences 
over outcome and action are additively separable, the additional information yields a Pareto 
improvement if and only if the signal conveys some information about the act that is not 
contained in the outcome alone. In other words, a purely random signal cannot improve 
the contract structure. Conversely, all signals used in contracts in such circumstances are 
informative; they convey information regarding the agent's act. Holmstrom indicates that 
the sufficiency argument generalizes to nonseparable utility functions. 

Holmstrom's results are based on randomization over fee schedules following act 
selection by the agent. We shall term such arrangements ex post randomization. Another 
possible contracting scheme available to the principal is randomization before act selection, 
which we term ex ante randomization. It is this set of schemes that we shall consider here. 
We demonstrate the following: 

(1) Ex ante randomization may be desirable (Pareto efficient) in full information and 
private information settings under certain assumptions; in particular, none of the articles 
we examined eliminated the possibility of ex ante randomization.' Additive separability 
and concavity of the agent's preferences do not rule out such randomization in the private 
information setting, even where the production function is concave. 
(2) In the private information case, contracts based on random signals are observationally 
equivalent to contracts based on "informative" signals. This is true if the observer (like 
the principal) cannot observe the agent's action. 
(3) Over repeated observations, the random signals in contracts will be correlated (ex post) 
with outcomes. The signal will then appear to be "informative." 

In Section 2 we review the agency model more formally and expand the characterization 
of ex ante and ex post randomization in light of related work. In Section 3 we identify 
conditions under which ex ante randomization will be desirable in a full information 
scenario. In Section 4 the private information case is considered; again ex ante randomization 
is shown to yield contracting improvements under some conditions. Section 5 contains 
concluding remarks. 

2. The basic agency model 

* We consider a setting in which the agent selects an action, denoted by a, which, 
combined with a state of nature, 0, yields an outcome, viewed as income or cash flows, 
denoted x = x(a, 0). The action may be viewed in a variety of ways (effort, leisure, perquisite 
consumption); here we view it as the amount of "effort" selected by the agent. As in 
Mirrlees (1974) and Holmstrom (1979), we suppress 0 and view x as a random variable 

' This includes, for example, Holmstrom (1979), Shavell (1979), Harris and Raviv (1979), Gjesdal (1982), 
Baiman and Demski (1980), and Grossman and Hart (1983). Holmstrom, however, in the working paper predecessor 
to Holmstrom (1979) notes (footnote 7) the possibility of a nonconcave Pareto frontier owing to the incentive 
compatibility condition in the private information case. Thus, potential efficient ex ante randomization is admitted. 
The footnote was deleted in the published version of the paper. 
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conditioned on a with the conditional probability density f(xla), where for a, > a2, f(xla1) 
dominates f(xla2) in the sense of first-degree stochastic dominance. 

Consider first the case in which the principal can observe both the outcome and effort. 
The basic problem for the principal is to find a sharing rule, s, to divide x in a manner 
that provides the agent incentives to expend effort and that shares risk in an optimal fashion. 
We denote the principal's preferences over income as u(x - s). The agent's preferences are 
denoted v(s, a). The following assumptions regarding these preferences are typical:2 

u'> O, u c <O 

VI >O, Van <O, V2<0, V22?<O 

Thus, the principal is risk neutral or risk averse, and the agent is risk averse in income, 
but risk averse or neutral in effort.3 The principal's problem can be stated as: 

max u(x - s(x, a))f(xla)dx (1) s(x,a),a 

subject to 

f v(s(x, a), a)f(xla)dx 2 V, 

where v is the agent's minimum utility (opportunity cost or market wage) required to ensure 
contract acceptance. The solution to this problem is first best; there is no conflict between 
risk sharing and incentives. 

If the principal can observe only the outcome, however, the sharing rule can no longer 
be set both to share risk optimally and to force the agent to select a first-best effort level. 
This private information problem is: 

max f u(x - s(x))f(xla)dx (2) 
s(x),a 

subject to 

(i) vs(x), a)f(xla)dx 2 v 

(ii) a E argmax f v(s(x), a')f(xla')dx, 
a'EA 

where A is the set of feasible effort levels. The second constraint indicates that the principal 
accounts for the optimizing behavior of the agent for any fee schedule selected and ensures 
a Nash equilibrium. 

The strategies of the principal in (1) and (2) have been represented as pure; however, 
randomization may be desirable. We distinguish between expost and ex ante randomization 
as follows. Consider a setting in which a wheel is spun after the action is chosen by the 
agent. The random signal (y) thus generated is used to determine the fee paid to the agent. 
This postaction device is termed ex post randomization and is depicted in Figure 1. 

Contrast this with ex ante randomization in which the wheel is spun before act selection 

2 We use the following convention in notation: 

d3v 02v as 02v 02v 
V, =y -, V,, = - 2' 2 =-, V22 = - V 1 2 dsda etc. 

3 No assumption is made here regarding the concavity of the agent's utility function, since nonconcavity 
will prove important in some later results. Some definitions of multiattribute risk aversion do not rely on concavity 
(Richard, 1975), while others do (Kihlstrom and Mirman, 1974). Rarely, however, is concavity assumed in the 
agency literature. Of course, nonconcavities immediately suggest efficient randomization. As we show in Theorems 
3 and 4, concavity is not sufficient to eliminate randomization in an agency setting. 
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FIGURE 1 

EX POST RANDOMIZATION 

CONTRACT ACTION WHEEL OUTCOME PAYMENT 
SPECIFIED TAKEN SPUN OBSERVED MADE 

l l l lTIME 
a y x S 

by the agent. The initial formulation of the contract specifies two (or more) branches; the 
specific contract branch that is in effect depends on the random signal. See Figure 2. 

Baiman (1982, p. 175) emphasizes the importance of the randomization issue: 

. the principal restricts his choice of payment schedules to the class of pure, nonrandomized, payment schedules. 
This seems intuitively reasonable since the agent and (usually) the principal are risk averse and therefore introducing 

any additional uncertainty by means of randomized payment schedules could only reduce utility. Accordingly, 
almost all of the agency research starts by implicitly restricting the payment schedule to be nonrandomized. 
However, if the Pareto efficient frontier is not concave then randomized payment schedules may be Pareto superior 
to nonrandomized ones. 

Baiman points out that because of this restriction to nonrandomized strategies, many of 
the agency theory results may be based on suboptimal payment schedules. He notes, 
however, that Gjesdal (1981) has shown that additive separability of the agent's utility 
function in wealth and effort is a sufficient condition for the Pareto optimality of pure 
payment schedules. Consequently, Baiman concludes that the problem of randomized 
payment schedules is mitigated. As we show in the following sections, Gjesdal's demon- 
stration applies to ex post randomization only. 

Holmstrom (1979) considers the case where v(s(x), a) is additively separable: 
v(s(x), a) = w(s(x)) - z(a).4 Using this assumption, Holmstrom investigates the value of 
an additional signal, denoted y, in the private information case. He shows that y is valuable 
if and only if the following condition does not hold: 

f(x, yla) = g(x, y)h(xla).5 
The construction of the proof implies that only ex post randomization is considered. The 
signal must follow the act, and only the fee is conditioned on y: s(x, y). Thus, in this 
formulation, fee is the only choice variable over which randomization occurs. 

FIGURE 2 

EX ANTE RANDOMIZATION 

CONTRACT CONTACT 
SPECIFIED WHEEL BRANCH ACTION OUTCOME PAYMENT 

WITH BRANCHES SPUN DETERMINED TAKEN OBSERVED MADE 

o I TIME 
Y a x S 

4Keeney and Raiffa (1976, p. 232) state: 

"The assumptions required for the justification of an additive utility function are rather restrictive. They allow 
for no interaction of the decision makers' preferences for various amounts of the two attributes. Often, we might 
expect the desirability of various amounts of one attribute to depend on the specified level of the other attribute. 
For instance, consider a farmer with preferences for various amounts of sunshine and rain because of the impact 
this will have on the season's crops. Here we might expect the farmer's preferences for various amounts of sunshine 
to be different depending on whether there had been only a little rain or much rain. Such an interaction of 
preferences cannot be expressed with the additive utility function." 

5 If Holmstrom's condition holds, the signal implies nothing about the action beyond what is already implicit 
in the outcome. The signal is, in such a case, not "informative." Holmstrom indicates that additive separability 
is unnecessary for the sufficiency part of this result. 
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Grossman and Hart (1983) construct the discrete analogue of Holmstrom's result for 
both additive and multiplicative separability of the agent's preferences. Again, only ex post 
randomization is considered. 

Gjesdal (1982) also investigates circumstances under which ex post randomization is 
potentially desirable. He demonstrates that: (1) ex post randomization is never desirable 
if the agent's preferences are additively separable; and (2) where separability does not hold, 
ex post randomization can be beneficial if the incentive effect exceeds the risk effect. An 
example is provided where the agent's first-order condition is convex in s. Randomization 
then induces higher effort, and the benefits from the increase exceed the risk premium 
required by the agent. 

Lambert ( 198 1) identifies sufficient conditions for ex ante randomization to be inefficient 
in the full information setting where the agent's utility function is additively separable. 
Essentially, Lambert's result (consistent with our Theorem 1 if the agent is assumed to 
have a concave and additive separable utility function) is that stochastic increasing returns 
to scale must be present to make ex ante randomization efficient. 

Thus, there has been considerable interest evidenced in the literature regarding the 
existence of efficient randomized contracting schemes. These schemes rely on nonconcavities 
in the Pareto surface which are generated by preference structures that are nonconcave or 
by production opportunities that exhibit increasing returns to scale. We formally characterize 
settings in which such nonconcavities can be exploited using (ex ante) randomized contracting 
strategies. 

In the full information regime, efficient randomization is ruled out if preferences and 
opportunities are restricted to be concave. Somewhat surprisingly, these same restrictions 
imposed in a private information setting do not necessarily eliminate the possibility of 
efficient ex ante randomization. They do, however, render any ex post randomization 
inefficient, as shown by Holmstrom. We formally characterize private information situations 
in which ex ante randomization is efficient. 

3. Full information case 

* Consider the problem described by (1), the full information scenario. If the principal 
is risk neutral (as we shall assume throughout), the solution is characterized by a fixed fee 
(not conditional on outcome) for the agent, so that the principal bears all risk. Randomization 
can dominate this pure strategy only if the Pareto frontier is nonconcave around the optimal 
(s*, a*) utility levels. We identify in Theorems 1 and 2 when this can occur. 

We consider only the simplest randomization device: a signal, y, that takes on values 
yj or Y2, each with probability ?/2.6 The signal is assumed independent of x. In addition, 
we consider a risk-neutral principal. If no arguments are shown for derivatives, it is assumed 
that they are evaluated at the first-best solution under consideration. All proofs are in the 
Appendix. 

Theorem 1. Let (s*, a*) be a first-best solution such that a* is an interior point. Assume 
v1 > 0 and v11 < 0. If 

f Xfaa(xla)dx > 11v1[(2 )2 - V22] (3) 

holds at (s*, a*), then the solution can be improved by ex ante randomization. 

6 In fact, the optimal randomization device will consist of a signal that takes on only two values spanning 
the nonconcave portion of the Pareto frontier. The optimal device, however, will generally not arbitrarily assign 
equal probabilities to each of the signals. We do not attempt here to characterize optimal contracts, which will 
generally depend on the bounds on action or fee or on the nonconcave region of the Pareto frontier. 
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Remark. The theorem can easily be interpreted. Condition (3) requires stochastic increasing 

returns to effort (d2EX> ?) or nonconcavity of the agent's utility function. Assuming that 

Ex is characterized by constant or decreasing returns to effort (Ex is concave), then the 
left-hand side of (3) is zero or negative. Since vl > 0, the right-hand side will be negative 
only if the term in brackets is negative, which can easily be seen to imply nonconcavity. 
If Ex is concave in a, an additively separable utility function renders ex ante randomization 
inefficient since vlI < 0, v22 ? 0 by assumption. Other functions, which display interactions 
between s and a, such as those which are multiplicatively separable, need not be concave 
(depending on the degree to which s and a act as substitutes or complements). 

Next we provide a simple two-outcome example that illustrates the theorem. 

Example 1. Assume there are two outcomes with associated probabilities: 

x f(xla) 

100 50 - a 
100 

200 
50 + a 

100 

where 0 - a - 50. Let v = 2Vsr(150 - a) and v = 2048. Under the above assumptions, 
the solution to (1) is s* = 64, a* = 22, with Eu* = 108 and Ev* = 2048. 

Consider the randomized contract:7 

{S = 41.53, a = 43 if yl is observed; 

s = 83.53, a = 1 if y2 is observed. 

Then we obtain: 
Eu = 109.47 and Ev = 2051.3301, 

and ex ante randomization is valuable. This example is constructed such that Ex displays 

constant returns to effort (O - 0 and the agent's utility function is nonconcave 

12/ IVI- V22 -s(2/(150 - a)) < 0 at (s*, a*). 

Theorem 2. Assume that v2 < 0, VI1 < 0, f xfa(x a)dx > 0 and 

>+[V22 - ()(4) 
Jxfa (x I a) dx 

V I 

at the first-best solution (s*, a*). Then ex ante randomization improves the solution.8 

Remark. As in Theorem 1, the most reasonable circumstance in which Theorem 2 holds 
is where the agent's utility is nonconcave. If Ex is concave, the left-hand side < 0; since 
V2 < 0 by assumption, the term in brackets is again critical, and only nonconcavity will 
satisfy the inequality. Again, additive separability resolves the issue (assuming V22 < 0) if 
decreasing or constant returns to effort characterize the problem. 

7This contract is obtained by taking t = 21 and p = 1/300 in the proof (see the Appendix). 
8 The proof of this theorem is similar to that of Theorem 1 and is available from the authors upon request. 
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Thus, the most reasonable circumstance in which ex ante randomization is efficient 
in the full information scenario is nonconcavity of the agent's utility function. There is, 
however, no reason a priori to eliminate interactions between effort and fee, which could 
yield such nonconcavity. As we have observed, the assumption of additive separability 
resolves the issue in the full-information case. Unfortunately, such a simple device is not 
sufficient in the private information setting. 

4. Private information case 

* Consider the problem described by (2), the private information scenario. In this setting, 
optimal risk sharing has been shown to be impossible; the fee must depend on the outcome 
to induce the agent to expend effort. We use the following notational conveniences in 
Theorems 3 and 4: 

d2 EvC 
B= - = (v22f+ 2V2fa + Vfaa) 

a2Ev C 
= j (V12f + VIfM 

D = d2EV = f v,, 

Theorem 3. Let s*(x) be a private information solution where the agent's optimal action, 
a*, is an interior point. Assume that the following two inequalities hold at (s*(x), a*): 

(x - S(X))faadx _? 0 (5a) 

C2 > BD (5b) 

with at least one inequality being strict. Then ex ante randomization improves the non- 
randomized solution. 

The conditions in Theorem 3 depend on the concavity of expected utilities of the 
principal and agent at the solution (s*(x), a*). Unfortunately, concavity of v does not imply 
concavity of Ev because of the interactions of effort on both utility and probabilities. Thus, 
additive separability of v is not sufficient to eliminate the possibility of ex ante randomization, 
as the next example illustrates. 

Example 2. 

x f(xla) 

x, 10 3-a 
6 

638 3 + a 
x2 17 6 

1 a 2 
where 0 _ a < 3. Let v(s, a) =--- - and let v =-9/85.= -.1058824. It can 

s 170 
be shown that s*(xi) = 5, s*(x2) = 17, and a* = 2, with Eu* = 17.941176 and 
Ev* = -.1058824. Consider the randomized contract:9 

9 This contract is obtained by taking t = 1.3 in the proof (see the Appendix). 
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{s(x,) = 6.3, s(x2) = 18.3 if yl is observed; 

s(x,) = 3.7, s(x2) = 15.7 if y2 is observed. 

Using (A5) in the proof, we obtain a*Iy, = 1.4745425 and a*1y2 = 2.9264934. Thus, we 
have Eu = 18.460164 and Ev =-. 1052507. 

Several observations can be made regarding this example. First, as in Example 1, 
constant returns to effort are assumed so that condition (5a) in Theorem 3 is an equality. 
Second, additive separability is assumed for the agent. But the expected utility function of 
the agent is constructed to be nonconcave at (s*(x), a*), as some tedious computations 
show. (The construction resulted in the precise nature of the parameters in the utility 
function.) Note, however, that the utility function is concave, so that it is the interaction 
between the density function and utility function that gives rise to the nonconcavity." 

In addition, Example 2 confirms observations (b) and (c) in the Introduction. Unless 
one can observe the act, which we assume is impossible for the principal in the private 
information case, the randomized contract cannot be distinguished from one conditioned 
on a signal that is informative in the sense of Holmstrom. In each case, we observe a 
contract, s(x, y), that depends on both the outcome and the signal. If the agent's act occurs 
before y is observed, then by Holmstrom's and Gjesdal's results, the signal must be infor- 
mative (if the agent's preferences are additively separable) or preferences must be such that 
ex post randomization is efficient. If the agent's act occurs after y is observed, then clearly 
y is not necessarily informative. The observer does not know whether the act occurs before 
or after the signal, which is the crucial distinction between ex ante and ex post randomization. 

Perhaps more important and more confounding from an empirical perspective, the 
(purely random) signal and outcome are correlated. This is straightforward since the prob- 
ability distribution over outcomes is parameterized by the act, which is influenced by the 
signal. In Example 2, if Yi is observed, the outcome, x, is on average 30.5, whereas if Y2 

is observed, the average outcome is 37.2. Thus the signal, which is purely random, has the 
appearance of being influenced by the action of the agent, when, in fact, the opposite is 
occurring. 

In no way do our results disagree with Holmstrom's. Rather, the direction of causality 
is different in the models, and as a result, there is observational equivalence between the 
two signals considered. In both cases the only observables are s, x, and y. In Holmstrom's 
case, s depends on y because the distribution of y is influenced by a, and thus y is informative. 
In our case a is influenced by y through s. But unless we know the timing of the act relative 
to the signal, we cannot distinguish between these situations. 

The problem of inferential error naturally arises in such a setting. Holmstrom's result 
implies that if a signal is utilized in a contract, then the signal must be associated with the 
agent's act. It may be, however, that the signal-generating system is being used merely as 
a randomizing device." 

10 This result creates difficulties for some solution techniques found in the literature. Grossman and Hart 
(1983), for example, consider a technique whereby the principal solves the agency problem in a two-stage process: 
first, the least-cost method of implementing a particular act is determined; then, the optimal act is found. If 
randomization is efficient, such a two-stage process is inappropriate, since no fixed act is optimal. The technique 
is valuable, however, inasmuch as the optimal randomization scheme involves randomizing between two points 
on the Pareto frontier, each of which is a nonrandomized solution. 

" Many contracts that depend in part on general market conditions may contain at least a component of 
ex ante randomization. For example, stock appreciation rights and stock options provided to management are 
partially dependent on market movements that occur before investment decisions. Similarly, the evaluation of 
management based on the performance of the firm as measured by accounting income may contain a random 
component if demand for the firm's products depends on general economic conditions. These apparently random 
components could be easily abstracted out of remuneration plans if desirable. 
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Theorem 3 is related to Theorem 1 in the sense that nonconcavities are exploited by 
randomization. Similarly, Theorem 4 is the private information analogue of Theorem 2. 

Theorem 4. Let s*(x) be a private information solution with an interior optimal action a*. 
If there exists a number p such that: 

2p[1 + B (X - s)fa] < 2 (X - S)faa (6a) 

2p[ Vhf- 
C 

(Vfa + v2f)]> B - D (6b) 

hold at (s*(x), a*), then ex ante randomization can improve s*(x).12 

5. Conclusions 

* Ex ante randomization is potentially desirable in an agency setting. When all variables 
are observable (the full information case), interactions exhibited in the agent's preferences 
(creating nonconcavities in the agent's utility function) or stochastic increasing returns to 
scale can give rise to profitable randomized contracts. In the private information case, we 
require binding commitments on the part of both the principal and agent so that, in 
particular, the agent cannot leave the firm following observation of an adverse (random) 
signal. The signal might specify a branch of the contract which does not provide the agent 
with his reservation expected utility. The agent must precommit not to leave the firm 
should this occur. Otherwise, the benefits of randomization cannot be exploited. This is 
similar to the case investigated by Harris and Raviv (1979) in which the agent observes 
the state before the act selection, and the agent cannot "renege" and accept alternative 
employment in the case of adverse state occurrence. 

Observed contracts may contain randomization. Unless the act itself can be observed, 
it will not be possible to distinguish random signals from "informative" signals. More 
problematic is the fact that random signals will appear to be informative since they will 
be correlated with the outcome. There does not seem to be any easy solution to the problem. 

Appendix 

* Proofs of Theorems 1 and 3 follow. 

Proof of Theorem 1. Choose p such that 

f Xfaa(xla)dx < P < [V22- (v 
)2 (Al) 

Given a small t, set 

Vt2 (A2) 
Vt' 

Consider the offer 
{(s* - pt2 + e, a* + t) if y' is observed; 

(s* - pt2 - c, a* - t) if Y2 is observed. 

Consider, in turn, the expected utility of the principal and agent with this new contract. First, the principal's 
expected utility is 

Eu(t) = 1/2Euly, + V12Euly2 

= 2 f x[f(xla* + t) +f(xla* - t)]dx - (s* - pt2). 

12 The proof of Theorem 4 is similar to that of Theorem 3 and is available from the authors upon request. 
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Using a Taylor series expansion around t = 0, we have 

t2 
Eu(t) = Eu(O) + Eu'(O)t + Eu"(O) - + 

2' 
where 

Eu(O) = Eu* 

Eu'(t) = 2 f x{fa(xla* + t) -fa(xla* - t)}dx + 2pt 

tEu'(O) = 0 

Eu"(t) = f X{faa(xla* + t) +faa(xla* -t)}dx + 2p 

2 Eu"(0) = t2 - 
Xfaa + P} 

2 t2 J 

Eu(t) - Eu* = t2{2 j Xfaadx + p} + higher order terms (t3, etc.) 

Et)-Eu* = 11 
(t)2 

= { j Xfaadx + p + higher order terms 

lim 2() 2 
Eu = 1 f 

XfaadX + P > o'3 (A3) 

(since higher order terms - 0). 
A similar procedure is used to examine the agent's expected utility under the new randomized contract. 

Since 

c= - ! t (where - is evaluated at (s*, a*)) 

Ev(t) V { [(* Pt 
2 - 

V12t) a* } t]+ {V[s* -pt2 + v12 t a t]} 

A Taylor series expansion about t = 0 yields: 

Ev(t) = Ev(O) + Ev'(O)t + Ev"(O) + 
2 

Ev(O) = Ev*; 

Ev'(t) = 2 {vi(-2pt - ) + V2 + VI(-2pt +v -V2 

tEv'(0) = 0; 

Ev"(i) = I {Vi(-2pt - ) + V12(-2pt - -2pvl + V12(-2pt - + V22 

+ vii(-2pt + ) - V12(-2pt + - 2pvl- V12(-2pt +-) + V22 

2 U (?) 4 V2(v22- ')PVI 

'3 A critical requirement of this formulation is that the limit (as t - 0) of the sum of terms in the Taylor 
series expansion of order greater than 2 is zero. That this will be true can be easily seen by restating the sum in 
remainder form: 

RN(t) = MN)N 

where 6 is some point in the interval 

(0, 

t). Then M( is bounded and lim 

- 

= 

0. 

(See Hildebrand (1976, 

p. 122)). 
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{2 ( VII - ) } 

Ev(t) - Ev* = { V22 - (t 2) t -PVI}12 + terms of higher order (i3, etc.); 

imEv(t) - Ev* I (VI 2) lim ()2 = (22-12 )-pv, > O (A4) t----o t ~~2 VI' 

(since higher order terms go to zero). 

Thus, we have the conclusion by (A3) and (A4). Q.E.D. 

Proof of Theorem 3. For a small t, consider the contract 

I s* + t if y, is observed; 

s* - t if Y2 is observed. 
If y, is observed, the agent then solves: 

T V2(S* + t, a)f(xla)dx + f v(s* + t, a)fa(xla)dx = 0. (A5) 

(We assume an interior solution.) Using a Taylor series expansion, note that 

t2 
a(t) = a(O) + a'(O)t + a"(O) 2 + 

da 
where a' = Implicitly differentiate (A5) with respect to t: 

fdta\ ~ da ~'( daY ' da 
Vi2 + V22 -[1+ I V2fa - + VI + V2 I a+ Vfaa 0 

da f (vI2f + 
VIfa) 

da 
(V22f+ 2V2fa + Vfaa) 

Since a(O) = a*, we have 

f (v2f + VIfa) 

a*IyI = a*- t + (terms of degree ? 2). (A6) f 
(v22f+ 2V2fa + Vfaa) 

a*1y2 can be found in a similar manner: 

f (v2f + VIfa) 

a*1y2 = a* + t + (terms of degree >- 2). (A7) 
f (V22f+ 2V2fa + Vfaa) 

Using the same techniques as in Theorem 1, some calculations then yield 

Eu(t) - Eu* 1 (v[2f + VIM 

t-0 t2 2 (X f V(f))f2 
f(V22f+ 2V2fa +Vfaa) 

0 by (5a); 

S [J ~(VI2f + V IMa 

lim Ev(t) - Ev* 1 J V iff 
1-0 12 2 

2 0 by (5b). 

Since at least one of the above inequalities is strict by assumption, this completes the proof. Q.E.D. 
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