research

Structure of Stochastic Dynamics near Fixed Points

Abstract

We analyze the structure of stochastic dynamics near either a stable or unstable fixed point, where force can be approximated by linearization. We find that a cost function that determines a Boltzmann-like stationary distribution can always be defined near it. Such a stationary distribution does not need to satisfy the usual detailed balance condition, but might have instead a divergence-free probability current. In the linear case the force can be split into two parts, one of which gives detailed balance with the diffusive motion, while the other induces cyclic motion on surfaces of constant cost function. Using the Jordan transformation for the force matrix, we find an explicit construction of the cost function. We discuss singularities of the transformation and their consequences for the stationary distribution. This Boltzmann-like distribution may be not unique, and nonlinear effects and boundary conditions may change the distribution and induce additional currents even in the neighborhood of a fixed point.Comment: 7 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019