5,909 research outputs found

    Spectroscopy of Giant Stars in the Pyxis Globular Cluster

    Get PDF
    The Pyxis globular cluster is a recently discovered globular cluster that lies in the outer halo (R_{gc} ~ 40 kpc) of the Milky Way. Pyxis lies along one of the proposed orbital planes of the Large Magellanic Cloud (LMC), and it has been proposed to be a detached LMC globular cluster captured by the Milky Way. We present the first measurement of the radial velocity of the Pyxis globular cluster based on spectra of six Pyxis giant stars. The mean heliocentric radial velocity is ~ 36 km/sec, and the corresponding velocity of Pyxis with respect to a stationary observer at the position of the Sun is ~ -191 km/sec. This radial velocity is a large enough fraction of the cluster's expected total space velocity, assuming that it is bound to the Milky Way, that it allows strict limits to be placed on the range of permissible transverse velocities that Pyxis could have in the case that it still shares or nearly shares an orbital pole with the LMC. We can rule out that Pyxis is on a near circular orbit if it is Magellanic debris, but we cannot rule out an eccentric orbit associated with the LMC. We have calculated the range of allowed proper motions for the Pyxis globular cluster that result in the cluster having an orbital pole within 15 degrees of the present orbital pole of the LMC and that are consistent with our measured radial velocity, but verification of the tidal capture hypothesis must await proper motion measurement from the Space Interferometry Mission or HST. A spectroscopic metallicity estimate of [Fe/H] = -1.4 +/- 0.1 is determined for Pyxis from several spectra of its brightest giant; this is consistent with photometric determinations of the cluster metallicity from isochrone fitting.Comment: 22 pages, 5 figures, aaspp4 style, accepted for publication in October, 2000 issue of the PAS

    Magellanic Cloud Periphery Carbon Stars IV: The SMC

    Full text link
    The kinematics of 150 carbon stars observed at moderate dispersion on the periphery of the Small Magellanic Cloud are compared with the motions of neutral hydrogen and early type stars in the Inter-Cloud region. The distribution of radial velocities implies a configuration of these stars as a sheet inclined at 73+/-4 degrees to the plane of the sky. The near side, to the South, is dominated by a stellar component; to the North, the far side contains fewer carbon stars, and is dominated by the neutral gas. The upper velocity envelope of the stars is closely the same as that of the gas. This configuration is shown to be consistent with the known extension of the SMC along the line of sight, and is attributed to a tidally induced disruption of the SMC that originated in a close encounter with the LMC some 0.3 to 0.4 Gyr ago. The dearth of gas on the near side of the sheet is attributed to ablation processes akin to those inferred by Weiner & Williams (1996) to collisional excitation of the leading edges of Magellanic Stream clouds. Comparison with pre LMC/SMC encounter kinematic data of Hardy, Suntzeff, & Azzopardi (1989) of carbon stars, with data of stars formed after the encounter, of Maurice et al. (1989), and Mathewson et al. (a986, 1988) leaves little doubt that forces other than gravity play a role in the dynamics of the H I.Comment: 30 pages; 7 figures, latex compiled, 1 table; to appear in AJ (June 2000

    Development of a tool for CBM STS module assembly

    Get PDF

    MF2334

    Get PDF
    Paul D. Ohlenbush, James W. Kunkel & Brad Williams, Prescribed burning programs, Kansas State University, April 1998

    A mechanical model of an STS station for the study of cable routing

    Get PDF

    Active SU(1,1) atom interferometry

    Full text link
    Active interferometers use amplifying elements for beam splitting and recombination. We experimentally implement such a device by using spin exchange in a Bose-Einstein condensate. The two interferometry modes are initially empty spin states that get spontaneously populated in the process of parametric amplification. This nonlinear mechanism scatters atoms into both modes in a pairwise fashion and generates a nonclassical state. Finally, a matched second period of spin exchange is performed that nonlinearly amplifies the output signal and maps the phase onto readily detectable first moments. Depending on the accumulated phase this nonlinear readout can reverse the initial dynamics and deamplify the entangled state back to empty spin states. This sequence is described in the framework of SU(1,1) mode transformations and compared to the SU(2) angular momentum description of passive interferometers.Comment: 10 pages, 6 figures; invited article for Quantum Science and Technolog

    The Anisotropic Distribution of M 31 Satellite Galaxies: A Polar Great Plane of Early-Type Companions

    Full text link
    The highly anisotropic distribution and apparent alignment of the Galactic satellites in polar great planes begs the question how common such distributions are. The satellite system of M31 is the only nearby system for which we currently have sufficiently accurate distances to study the three-dimensional satellite distribution. We present the spatial distribution of the 15 presently known M31 companions in a coordinate system centered on M31 and aligned with its disk. Through a detailed statistical analysis we show that the full satellite sample describes a plane that is inclined by -56 deg with respect to the poles of M31 and that has an r.m.s. height of 100 kpc. With 88% the statistical significance of this plane is low and it is unlikely to have a physical meaning. The great stellar stream found near Andromeda is inclined to this plane by 7 deg. There is little evidence for a Holmberg effect. If we confine our analysis to early-type dwarfs, we find a best-fit polar plane within 5 deg to 7 deg from the pole of M31. This polar great plane has a statistical significance of 99.3% and includes all dSphs (except for And II), M32, NGC 147, and PegDIG. The r.m.s. distance of these galaxies from the polar plane is 16 kpc. The nearby spiral M33 has a distance of only about 3 kpc from this plane, which points toward the M81 group. We discuss the anisotropic distribution of M31's early-type companions in the framework of three scenarios, namely as remnants of the break-up of a larger progenitor, as tracer of a prolate dark matter halo, and as tracer of collapse along large-scale filaments. (Abridged)Comment: 14 pages, 5 figures, accepted for publication in the Astronomical Journa
    corecore