1,415 research outputs found
Violent Relaxation of Indistinguishable Objects and Neutrino Hot Dark Matter in Clusters of Galaxies
The statistical mechanical investigation of violent relaxation (Lynden-Bell
1967) is extended to indistinguishable objects. It is found that,
coincidentally, the equilibrium distribution is the same as that obtained for
classical objects. For massive neutrinos, the Tremaine \& Gunn (1979) phase
space bound is revisited and reinterpretated as the limit indicating the onset
of degeneracy related to the coarse-grained phase space distribution. In the
context of one of the currently most popular cosmological models, the Cold and
Hot Dark Matter (CHDM) model (Primack et al. 1995), the onset of degeneracy may
be of importance in the core region of clusters of galaxies. Degeneracy allows
the neutrino HDM density to exceed the limit imposed by the Tremaine \& Gunn
(1979) bound while accounting for the phase space bound.Comment: AASTeX, 16 pages, 2 EPS figures, uses aas2pp4.sty. Accepted by ApJ
Letter
Twenty Years of Timing SS433
We present observations of the optical ``moving lines'' in spectra of the
Galactic relativistic jet source SS433 spread over a twenty year baseline from
1979 to 1999. The red/blue-shifts of the lines reveal the apparent precession
of the jet axis in SS433, and we present a new determination of the precession
parameters based on these data. We investigate the amplitude and nature of
time- and phase-dependent deviations from the kinematic model for the jet
precession, including an upper limit on any precessional period derivative of
. We also dicuss the implications of these results
for the origins of the relativistic jets in SS433.Comment: 21 pages, including 9 figures. To appear in the Astrophysical Journa
OAO-3 end of mission tests report
Twelve engineering type tests were performed on several subsystems and experiment(s) of the OAO 3 spacecraft near its end of mission. The systems tested include: Princeton experiment package (PEP), fine error system guidance, inertial reference unit, star trackers, heat pipes, thermal control coatings, command and data handling, solar array; batteries, and onboard processor/power boost regulator. Generally, the systems performed well for the 8 1/2 years life of OAO 3, although some degradation was noted in the sensitivity of PEP and in the absorptivity of the skin coatings. Battery life was prolonged during the life of the mission in large part by carefully monitoring the charge-discharge cycle with careful attention not to overcharge
A statistical-mechanical explanation of dark matter halo properties
Cosmological N-body simulations have revealed many empirical relationships of
dark matter halos, yet the physical origin of these halo properties still
remains unclear. On the other hand, the attempts to establish the statistical
mechanics for self-gravitating systems have encountered many formal
difficulties, and little progress has been made for about fifty years. The aim
of this work is to strengthen the validity of the statistical-mechanical
approach we have proposed previously to explain the dark matter halo
properties. By introducing an effective pressure instead of the radial pressure
to construct the specific entropy, we use the entropy principle and proceed in
a similar way as previously to obtain an entropy stationary equation. An
equation of state for equilibrated dark halos is derived from this entropy
stationary equation, by which the dark halo density profiles with finite mass
can be obtained. We also derive the anisotropy parameter and pseudo-phase-space
density profile. All these predictions agree well with numerical simulations in
the outer regions of dark halos. Our work provides further support to the idea
that statistical mechanics for self-gravitating systems is a viable tool for
investigation.Comment: 5 pages, 4 figures, Accepted by A&
Chance long-distance or human-mediated dispersal? How Acacia s.l. farnesiana attained its pan-tropical distribution
Acacia s.l. farnesiana, which originates from Mesoamerica, is the most widely distributed Acacia s.l. species across the tropics. It is assumed that the plant was transferred across the Atlantic to southern Europe by Spanish explorers, and then spread across the Old World tropics through a combination of chance long-distance and human-mediated dispersal. Our study uses genetic analysis and information from historical sources to test the relative roles of chance and human-mediated dispersal in its distribution. The results confirm the Mesoamerican origins of the plant and show three patterns of human- mediated dispersal. Samples from Spain showed greater genetic diversity than those from other Old World tropics, suggesting more instances of transatlantic introductions from the Americas to that country than to other parts of Africa and Asia. Individuals from the Philippines matched a population from South Central Mexico and were likely to have been direct, trans-Pacific introductions. Australian samples were genetically unique, indicating that the arrival of the species in the continent was independent of these European colonial activities. This suggests the possibility of pre-European human- mediated dispersal across the Pacific Ocean. These significant findings raise new questions for biogeographic studies that assume chance or transoceanic dispersal 2 for disjunct plant distributions
Laser-Cluster-Interaction in a Nanoplasma-Model with Inclusion of Lowered Ionization Energies
The interaction of intense laser fields with silver and argon clusters is
investigated theoretically using a modified nanoplasma model. Single pulse and
double pulse excitations are considered. The influence of the dense cluster
environment on the inner ionization processes is studied including the lowering
of the ionization energies. There are considerable changes in the dynamics of
the laser-cluster interaction. Especially, for silver clusters, the lowering of
the ionization energies leads to increased yields of highly charged ions.Comment: 10 pages, 11 figure
Phase transitions in self-gravitating systems. Self-gravitating fermions and hard spheres models
We discuss the nature of phase transitions in self-gravitating systems both
in the microcanonical and in the canonical ensemble. We avoid the divergence of
the gravitational potential at short distances by considering the case of
self-gravitating fermions and hard spheres models. Three kinds of phase
transitions (of zeroth, first and second order) are evidenced. They separate a
``gaseous'' phase with a smoothly varying distribution of matter from a
``condensed'' phase with a core-halo structure. We propose a simple analytical
model to describe these phase transitions. We determine the value of energy (in
the microcanonical ensemble) and temperature (in the canonical ensemble) at the
transition point and we study their dependance with the degeneracy parameter
(for fermions) or with the size of the particles (for a hard spheres gas).
Scaling laws are obtained analytically in the asymptotic limit of a small short
distance cut-off. Our analytical model captures the essential physics of the
problem and compares remarkably well with the full numerical solutions.Comment: Submitted to Phys. Rev. E. New material adde
General-Relativistic Thomas-Fermi model
A system of self-gravitating massive fermions is studied in the framework of
the general-relativistic Thomas-Fermi model. We study the properties of the
free energy functional and its relation to Einstein's field equations. A
self-gravitating fermion gas we then describe by a set of Thomas-Fermi type
self-consistency equations.Comment: 7 pages, LaTex, to appear in Gen. Rel. Gra
Density profiles of dark matter haloes: diversity and dependence on environment
(Abridged) We study the outer density profiles of dark matter haloes
predicted by a generalized secondary infall model and observed in a N-body
cosmological simulation of a \Lambda CDM model. We find substantial systematic
variations in shapes and concentrations of the halo profiles as well as a
strong correlation of the profiles with the environment. In the N-body
simulation, the average outer slope of the density profiles, \beta (\rho\propto
r^{-\beta}), of isolated haloes is \approx 2.9; 68% of these haloes have values
of \beta between 2.5 and 3.8. Haloes in dense environments of clusters are more
concentrated and exhibit a broad distribution of \beta with values larger than
for isolated haloes . Contrary to what one may expect, the haloes contained
within groups and galaxy systems are less concentrated and have flatter outer
density profiles than the isolated haloes. The concentration decreases with
M_h, but its scatter for a given mass is substantial. The mass and circular
velocity of the haloes are strongly correlated: M_h \propto V_m^{\alpha} with
\alpha ~ 3.3 (isolated) and ~3.5 (haloes in clusters). For M_h=10^12M_sun the
rms deviations from these relations are \Delta logM_h=0.12 and 0.18,
respectively. Approximately 30% of the haloes are contained within larger
haloes or have massive companions (larger than ~0.3 the mass of the current
halo) within 3 virial radii. The remaining 70% of the haloes are isolated
objects. The distribution of \beta as well as the concentration-mass and
M_h-V_m relations for the isolated haloes agree very well with the predictions
of our seminumerical approach which is based on a generalization of the
secondary infall model and on the extended Press-Schechter formalism.Comment: 14 pages, 11 figures included, uses mn.sty, accepted by MNRAS. Minor
modifications, new and updated reference
- …
