3,022 research outputs found
Propagating Waves Transverse to the Magnetic Field in a Solar Prominence
We report an unusual set of observations of waves in a large prominence
pillar which consist of pulses propagating perpendicular to the prominence
magnetic field. We observe a huge quiescent prominence with the Solar Dynamics
Observatory (SDO) Atmospheric Imaging Assembly (AIA) in EUV on 2012 October 10
and only a part of it, the pillar, which is a foot or barb of the prominence,
with the Hinode Solar Optical Telescope (SOT) (in Ca II and H\alpha lines), Sac
Peak (in H\alpha, H\beta\ and Na-D lines), THEMIS ("T\'elescope
H\'eliographique pour l' Etude du Magn\'etisme et des Instabilit\'es Solaires")
with the MTR (MulTi-Raies) spectropolarimeter (in He D_3 line). The THEMIS/MTR
data indicates that the magnetic field in the pillar is essentially horizontal
and the observations in the optical domain show a large number of horizontally
aligned features on a much smaller scale than the pillar as a whole. The data
is consistent with a model of cool prominence plasma trapped in the dips of
horizontal field lines. The SOT and Sac Peak data over the 4 hour observing
period show vertical oscillations appearing as wave pulses. These pulses, which
include a Doppler signature, move vertically, perpendicular to the field
direction, along thin quasi-vertical columns in the much broader pillar. The
pulses have a velocity of propagation of about 10 km/s, a period about 300 sec,
and a wavelength around 2000 km. We interpret these waves in terms of fast
magneto-sonic waves and discuss possible wave drivers.Comment: Accepted for publication in The Astrophysical Journa
Temperature Structure of a Coronal Cavity
we analyze the temperature structure of a coronal cavity observed in Aug. 2007. coronal cavities are long, low-density structures located over filament neutral lines and are often seen as dark elliptical features at the solar limb in white light, EUV and x-rays. when these structures erupt they form the cavity portions of CMEs. It is important to establish the temperature structure of cavities in order to understand the thermodynamics of cavities in relation to their three-dimensional magnetic structure. To analyze the temperature we compare temperature ratios of a series of iron lines observed by the Hinode/EUv Imaging spectrometer (EIS). We also use those lines to constrain a forward model of the emission from the cavity and streamer. The model assumes a coronal streamer with a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel len~th. Temperature and density can be varied as a function of altitude both in the cavity and streamer. The general cavity morphology and the cavity and streamer density have already been modeled using data from STEREO's SECCHI/EUVI and Hinode/EIS (Gibson et al 2010 and Schmit & Gibson 2011)
Charge Density Wave in Two-Dimensional Electron Liquid in Weak Magnetic Field
We study the ground state of a clean two-dimensional electron liquid in a
weak magnetic field where lower Landau levels are completely filled
and the upper level is partially filled. It is shown that the electrons at the
upper Landau level form domains with filling factor equal to one and zero. The
domains alternate with a spatial period of order of the cyclotron radius, which
is much larger than the interparticle distance at the upper Landau level. The
one-particle density of states, which can be probed by tunneling experiments,
is shown to have a pseudogap linearly dependent on the magnetic field in the
limit of large .Comment: Several errors correcte
Edge state transmission, duality relation and its implication to measurements
The duality in the Chalker-Coddington network model is examined. We are able
to write down a duality relation for the edge state transmission coefficient,
but only for a specific symmetric Hall geometry. Looking for broader
implication of the duality, we calculate the transmission coefficient in
terms of the conductivity and in the diffusive
limit. The edge state scattering problem is reduced to solving the diffusion
equation with two boundary conditions
and
.
We find that the resistances in the geometry considered are not necessarily
measures of the resistivity and () holds only
when is quantized. We conclude that duality alone is not sufficient
to explain the experimental findings of Shahar et al and that Landauer-Buttiker
argument does not render the additional condition, contrary to previous
expectation.Comment: 16 pages, 3 figures, to appear in Phys. Rev.
Universal relation between longitudinal and transverse conductivities in quantum Hall effect
We show that any critical transition region between two adjacent Hall
plateaus in either integer or fractional quantum Hall effect is characterized
by a universal semi-circle relationship between the longitudinal and transverse
conductivities, provided the sample is homogeneous and isotropic on a large
scale. This conclusion is demonstrated both for the phase-coherent quantum
transport as well as for the incoherent transport.Comment: REVTEX 3.0, 1 figure, 4 pages. SISSA-08179
Bulk Versus Edge in the Quantum Hall Effect
The manifestation of the bulk quantum Hall effect on edge is the chiral
anomaly. The chiral anomaly {\it is} the underlying principle of the ``edge
approach'' of quantum Hall effect. In that approach, \sxy should not be taken
as the conductance derived from the space-local current-current correlation
function of the pure one-dimensional edge problem.Comment: 4 pages, RevTex, 1 postscript figur
Non-Universal Behavior of Finite Quantum Hall Systems as a Result of Weak Macroscopic Inhomogeneities
We show that, at low temperatures, macroscopic inhomogeneities of the
electron density in the interior of a finite sample cause a reduction in the
measured conductivity peak heights compared to the
universal values previously predicted for infinite homogeneous samples. This
effect is expected to occur for the conductivity peaks measured in standard
experimental geometries such as the Hall bar and the Corbino disc. At the
lowest temperatures, the decrease in is found to
saturate at values proportional to the difference between the adjacent plateaus
in , with a prefactor which depends on the particular realization
of disorder in the sample. We argue that this provides a possible explanation
of the ``non-universal scaling'' of observed in a
number of experiments. We also predict an enhancement of the ``non-local''
resistance due to the macroscopic inhomogeneities. We argue that, in the Hall
bar with a sharp edge, the enhanced ``non-local'' resistance and the size
corrections to the ``local'' resistance are directly related. Using
this relation, we suggest a method by which the finite-size corrections may be
eliminated from and in this case.Comment: REVTEX 3.0 file (38 pages) + 5 postscript figures in uuencoded
format. Revised version includes an additional figure showing unpublished
experimental dat
- …
