110 research outputs found

    Rotating black hole hair

    Get PDF
    A Kerr black hole sporting cosmic string hair is studied in the context of the abelian Higgs model vortex. It is shown that such a system displays much richer phenomenology than its static Schwarzschild or Reissner-Nordstrom cousins, for example, the rotation generates a near horizon ‘electric’ field. In the case of an extremal rotating black hole, two phases of the Higgs hair are possible: large black holes exhibit standard hair, with the vortex piercing the event horizon. Small black holes on the other hand, exhibit a flux-expelled solution, with the gauge and scalar field remaining identically in their false vacuum state on the event horizon. This solution however is extremely sensitive to confirm numerically, and we conjecture that it is unstable due to a supperradiant mechanism similar to the Kerr-adS instability. Finally, we compute the gravitational back reaction of the vortex, which turns out to be far more nuanced than a simple conical deficit. While the string produces a conical effect, it is conical with respect to a local co-rotating frame, not with respect to the static frame at infinity

    Applications of hidden symmetries to black hole physics

    Full text link
    This work is a brief review of applications of hidden symmetries to black hole physics. Symmetry is one of the most important concepts of the science. In physics and mathematics the symmetry allows one to simplify a problem, and often to make it solvable. According to the Noether theorem symmetries are responsible for conservation laws. Besides evident (explicit) spacetime symmetries, responsible for conservation of energy, momentum, and angular momentum of a system, there also exist what is called hidden symmetries, which are connected with higher order in momentum integrals of motion. A remarkable fact is that black holes in four and higher dimensions always possess a set (`tower') of explicit and hidden symmetries which make the equations of motion of particles and light completely integrable. The paper gives a general review of the recently obtained results. The main focus is on understanding why at all black holes have something (symmetry) to hide.Comment: This is an extended version of the talks at NEB-14 conference (June,Ioannina,Greece) and JGRG20 meeting (September, Kyoto, Japan

    Symmetries of the Dirac operator with skew-symmetric torsion

    Get PDF
    In this paper, we consider the symmetries of the Dirac operator derived from a connection with skew-symmetric torsion. We find that the generalized conformal Killing-Yano tensors give rise to symmetry operators of the massless Dirac equation, provided an explicitly given anomaly vanishes. We show that this gives rise to symmetries of the Dirac operator in the case of strong Kahler with torsion (KT) and strong hyper-Kahler with torsion (HKT) manifolds

    Exactly solvable strings in Minkowski spacetime

    Full text link
    We study the integrability of the equations of motion for the Nambu-Goto strings with a cohomogeneity-one symmetry in Minkowski spacetime. A cohomogeneity-one string has a world surface which is tangent to a Killing vector field. By virtue of the Killing vector, the equations of motion can be reduced to the geodesic equation in the orbit space. Cohomogeneity-one strings are classified into seven classes (Types I to VII). We investigate the integrability of the geodesic equations for all the classes and find that the geodesic equations are integrable. For Types I to VI, the integrability comes from the existence of Killing vectors on the orbit space which are the projections of Killing vectors on Minkowski spacetime. For Type VII, the integrability is related to a projected Killing vector and a nontrivial Killing tensor on the orbit space. We also find that the geodesic equations of all types are exactly solvable, and show the solutions.Comment: 11 pages, a reference added, some points clarifie

    Do Killing-Yano tensors form a Lie Algebra?

    Get PDF
    Killing-Yano tensors are natural generalizations of Killing vectors. We investigate whether Killing-Yano tensors form a graded Lie algebra with respect to the Schouten-Nijenhuis bracket. We find that this proposition does not hold in general, but that it does hold for constant curvature spacetimes. We also show that Minkowski and (anti)-deSitter spacetimes have the maximal number of Killing-Yano tensors of each rank and that the algebras of these tensors under the SN bracket are relatively simple extensions of the Poincare and (A)dS symmetry algebras.Comment: 17 page

    Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization

    Full text link
    We investigate the critical behaviour of charged and rotating AdS black holes in d spacetime dimensions, including effects from non-linear electrodynamics via the Born-Infeld action, in an extended phase space in which the cosmological constant is interpreted as thermodynamic pressure. For Reissner-Nordstrom black holes we find that the analogy with the Van der Walls liquid-gas system holds in any dimension greater than three, and that the critical exponents coincide with those of the Van der Waals system. We find that neutral slowly rotating black holes in four space-time dimensions also have the same qualitative behaviour. However charged and rotating black holes in three spacetime dimensions do not exhibit critical phenomena. For Born-Infeld black holes we define a new thermodynamic quantity B conjugate to the Born-Infeld parameter b that we call Born-Infeld vacuum polarization. We demonstrate that this quantity is required for consistency of both the first law of thermodynamics and the corresponding Smarr relation.Comment: 23 pages, 32 figures, v2: minor changes, upgraded reference

    Pressure and volume in the first law of black hole thermodynamics

    Get PDF
    The mass of a black hole is interpreted, in terms of thermodynamic potentials, as being the enthalpy, with the pressure given by the cosmological constant. The volume is then defined as being the Legendre transform of the pressure and the resulting relation between volume and pressure is explored in the case of positive pressure. A virial expansion is developed and a van der Waals like critical point determined. The first law of black hole thermodynamics includes a PdV term which modifies the maximal efficiency of a Penrose process. It is shown that, in four dimensional space-time with a negative cosmological constant an extremal charged rotating black hole can have an efficiency of up to 75%, while for an electrically neutral rotating back hole this figure is reduced to 52%, compared to the corresponding values of 50% and 29% respectively when the cosmological constant is zero.Comment: 20 pages, 4 figures, minor typos corrected and references updated in v

    Separability of Black Holes in String Theory

    Full text link
    We analyze the origin of separability for rotating black holes in string theory, considering both massless and massive geodesic equations as well as the corresponding wave equations. We construct a conformal Killing-Stackel tensor for a general class of black holes with four independent charges, then identify two-charge configurations where enhancement to an exact Killing-Stackel tensor is possible. We show that further enhancement to a conserved Killing-Yano tensor is possible only for the special case of Kerr-Newman black holes. We construct natural null congruences for all these black holes and use the results to show that only the Kerr-Newman black holes are algebraically special in the sense of Petrov. Modifying the asymptotic behavior by the subtraction procedure that induces an exact SL(2)^2 also preserves only the conformal Killing-Stackel tensor. Similarly, we find that a rotating Kaluza-Klein black hole possesses a conformal Killing-Stackel tensor but has no further enhancements.Comment: 27 page
    corecore