1,313 research outputs found

    Energy-Aware mode selection for throughput maximization in RF-Powered D2D Communications

    Full text link
    Doubly-near-far problem in RF-powered networks can be mitigated by choosing appropriate device-To-device (D2D) communication mode and implementing energy-efficient information transfer (IT). In this work, we present a novel RF energy harvesting architecture where each transmitting-receiving user pair is allocated a disjoint channel for its communication which is fully powered by downlink energy transfer (ET) from hybrid access point (HAP). Considering that each user pair can select either D2D or cellular mode of communication, we propose an optimized transmission protocol controlled by the HAP that involves harvested energy-Aware jointly optimal mode selection (MS) and time allocation (TA) for ET and IT to maximize the sum-Throughput. Jointly global optimal solutions are derived by efficiently resolving the combinatorial issue with the help of optimal MS strategy for a given TA for ET. Closed-form expressions for the optimal TA in D2D and cellular modes are also derived to gain further analytical insights. Numerical results show that the joint optimal MS and TA, which significantly outperforms the benchmark schemes in terms of achievable RF-powered sum-Throughput, is closely followed by the optimal TA scheme for D2D users. In fact, about 2/3 fraction of the total user pairs prefer to follow the D2D mode for efficient RF-powered IT

    Physically-based image editing on mobile devices

    Get PDF
    The increasing processing power of mobile devices such as smartphones and tablets, along with the touch and gesture-based user interaction they provide, make them very interesting platforms for exploring brand-new image editing tools with natural interfaces. We present two different applications that rely heavily on fluid dynamics solvers for simulating image formation. The first one allows the user to add liquid to a virtual lens. Then refraction of light through the modified optical system is calculated, obtaining interesting creative distortions from the source image. The second tool simulates the wet plate collodion process, the first mainstream photographic technique, very popular on the 19th century. In this application, the user starts mixing the chemicals for the collodion film, which is created by spreading the liquid over a plate. This plate is then exposed and developed for obtaining an accurate depiction of the final image. All the calculations are based on real measured data, ensuring a close match with the real process. These example applications make full use of the available resources, providing instant feedback for an organic and engaging user experience

    Scanning in Situ Spectroscopy Pplatform for Imaging Surgical Breast Tissue Specimens

    Get PDF
    A non-contact localized spectroscopic imaging platform has been developed and optimized to scan 1 x 1 cm² square regions of surgically resected breast tissue specimens with ~150-micron resolution. A color corrected, image-space telecentric scanning design maintained a consistent sampling geometry and uniform spot size across the entire imaging field. Theoretical modeling in ZEMAX allowed estimation of the spot size, which is equal at both the center and extreme positions of the field with ~5% variation across the designed waveband, indicating excellent color correction. The spot sizes at the center and an extreme field position were also measured experimentally using the standard knife-edge technique and were found to be within ~8% of the theoretical predictions. Highly localized sampling offered inherent insensitivity to variations in background absorption allowing direct imaging of local scattering parameters, which was validated using a matrix of varying concentrations of Intralipid and blood in phantoms. Four representative, pathologically distinct lumpectomy tissue specimens were imaged, capturing natural variations in tissue scattering response within a given pathology. Variations as high as 60% were observed in the average reflectance and relative scattering power images, which must be taken into account for robust classification performance. Despite this variation, the preliminary data indicates discernible scatter power contrast between the benign vs malignant groups, but reliable discrimination of pathologies within these groups would require investigation into additional contrast mechanisms

    Video-Rate Near Infrared Tomography to Image Pulsatile Absorption Properties in Thick Tissue

    Get PDF
    A high frame-rate near-infrared (NIR) tomography system was created to allow transmission imaging of thick tissues with spectral encoding for parallel source implementation. The design was created to maximize tissue penetration through up to 10 cm of tissue, allowing eventual use in human imaging. Eight temperature-controlled laser diodes (LD) are used in parallel with 1.5 nm shifts in their lasing wavelengths. Simultaneous detection is achieved with eight high-resolution, CCD-based spectrometers that were synchronized to detect the intensities and decode their source locations from the spectrum. Static and dynamic imaging is demonstrated through a 64 mm tissue-equivalent phantom, with acquisition rates up to 20 frames per second. Imaging of pulsatile absorption changes through a 72 mm phantom was demonstrated with a 0.5 Hz varying object having only 1% effect upon the transmitted signal. This subtle signal change was used to show that while reconstructing the signal changes in a tissue may not be possible, image-guided recovery of the pulsatile change in broad regions of tissue was possible. The ability to image thick tissue and the capacity to image periodic changes in absorption makes this design well suited for tracking thick tissue hemodynamics in vivo during MR or CT imaging

    Chylomicrons Produced by Caco-2 Cells Contained ApoB-48 with Diameter of 80-200 nm

    Get PDF
    The small intestine generally transports dietary fats to circulation in triglyceride (TG)-rich lipoproteins. The two main intestinal lipoproteins are chylomicron (CM) and very low-density lipoprotein (VLDL). Unfortunately, studies on the CM biogenesis and intestinal transport of dietary fats have been hampered by the lack of an adequate in vitro model. In this study, we investigated the possible factors that might increase the efficiency of CM production by Caco-2 cells. We utilized sequential NaCl gradient ultracentrifugation to isolate the CMs that were secreted by the Caco-2 cells. To confirm the successful isolation of the CMs, we performed Fat Red 7B staining, TG reading, apolipoprotein B (ApoB) measurement, and transmission electron microcopy (TEM) analysis. We then tested the effects of cell differentiation, oleic acid, mono-olein, egg lecithin, incubation time, and collagen matrix on CM secretion. We found that cell differentiation, oleic acid, and lecithin were critical for CM secretion. Using the Transwell system, we further confirmed that the CMs produced by our Caco-2 cells contained significant amount of TGs and ApoB-48 such that they could be detected without the use of isotope labeling. In conclusion, when fully differentiated Caco-2 were challenged with oleic acid, lecithin, and sodium taurocholate, 21% of their total number of lipoproteins were CMs with the diameter of 80-200 nm

    Chylomicrons Produced by Caco-2 Cells Contained ApoB-48 With Diameter of 80-200 nm

    Get PDF
    The small intestine generally transports dietary fats to circulation in triglyceride (TG)-rich lipoproteins. The two main intestinal lipoproteins are chylomicron (CM) and very low-density lipoprotein (VLDL). Unfortunately, studies on the CM biogenesis and intestinal transport of dietary fats have been hampered by the lack of an adequate in vitro model. In this study, we investigated the possible factors that might increase the efficiency of CM production by Caco-2 cells. We utilized sequential NaCl gradient ultracentrifugation to isolate the CMs that were secreted by the Caco-2 cells. To confirm the successful isolation of the CMs, we performed Fat Red 7B staining, TG reading, apolipoprotein B (ApoB) measurement, and transmission electron microcopy (TEM) analysis. We then tested the effects of cell differentiation, oleic acid, mono-olein, egg lecithin, incubation time, and collagen matrix on CM secretion. We found that cell differentiation, oleic acid, and lecithin were critical for CM secretion. Using the Transwell system, we further confirmed that the CMs produced by our Caco-2 cells contained significant amount of TGs and ApoB-48 such that they could be detected without the use of isotope labeling. In conclusion, when fully differentiated Caco-2 were challenged with oleic acid, lecithin, and sodium taurocholate, 21% of their total number of lipoproteins were CMs with the diameter of 80-200 nm

    Manifold Interpolating Optimal-Transport Flows for Trajectory Inference

    Full text link
    We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow) that learns stochastic, continuous population dynamics from static snapshot samples taken at sporadic timepoints. MIOFlow combines dynamic models, manifold learning, and optimal transport by training neural ordinary differential equations (Neural ODE) to interpolate between static population snapshots as penalized by optimal transport with manifold ground distance. Further, we ensure that the flow follows the geometry by operating in the latent space of an autoencoder that we call a geodesic autoencoder (GAE). In GAE the latent space distance between points is regularized to match a novel multiscale geodesic distance on the data manifold that we define. We show that this method is superior to normalizing flows, Schr\"odinger bridges and other generative models that are designed to flow from noise to data in terms of interpolating between populations. Theoretically, we link these trajectories with dynamic optimal transport. We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.Comment: Presented at NeurIPS 2022, 24 pages, 7 tables, 14 figure

    Anthropomorphic Breast Phantoms with Physiological Water, Lipid, and Hemoglobin Content for Near-Infrared Spectral Tomography

    Get PDF
    Breast mimicking tissue optical phantoms with sufficient structural integrity to be deployed as stand-alone imaging targets are developed and successfully constructed with biologically relevant concentrations of water, lipid, and blood. The results show excellent material homogeneity and reproducibility with inter- and intraphantom variability of 3.5 and 3.8%, respectively, for water and lipid concentrations ranging from 15 to 85%. The phantoms were long-lasting and exhibited water and lipid fractions that were consistent to within 5% of their original content when measured 2 weeks after creation. A breast-shaped three-compartment model of adipose, fibroglandular, and malignant tissues was created with water content ranging from 30% for the adipose simulant to 80% for the tumor. Mean measured water content ranged from 30% in simulated adipose to 73% in simulated tumor with the higher water localized to the tumor-like material. This novel heterogeneous phantom design is composed of physiologically relevant concentrations of the major optical absorbers in the breast in the near-infrared wavelengths that should significantly improve imaging system characterization and optimization because the materials have stand-alone structural integrity and can be readily molded into the sizes and shapes of tissues commensurate with clinical breast imaging
    • …
    corecore