15,272 research outputs found
Strong interaction of a turbulent spot with a shock-induced separation bubble
Direct numerical simulations have been conducted to study the passage of a turbulent spot through a shock-induced separation bubble. Localized blowing is used to trip the boundary layer well upstream of the shock impingement, leading to mature turbulent spots at impingement, with a length comparable to the length of the separation zone. Interactions are simulated at free stream Mach numbers of two and four, for isothermal (hot) wall boundary conditions. The core of the spot is seen to tunnel through the separation bubble, leading to a transient reattachment of the flow. Recovery times are long due to the influence of the calmed region behind the spot. The propagation speed of the trailing interface of the spot decreases during the interaction and a substantial increase in the lateral spreading of the spot was observed. A conceptual model based on the growth of the lateral shear layer near the wingtips of the spot is used to explain the change in lateral growth rat
Uplink Linear Receivers for Multi-cell Multiuser MIMO with Pilot Contamination: Large System Analysis
Base stations with a large number of transmit antennas have the potential to
serve a large number of users at high rates. However, the receiver processing
in the uplink relies on channel estimates which are known to suffer from pilot
interference. In this work, making use of the similarity of the uplink received
signal in CDMA with that of a multi-cell multi-antenna system, we perform a
large system analysis when the receiver employs an MMSE filter with a pilot
contaminated estimate. We assume a Rayleigh fading channel with different
received powers from users. We find the asymptotic Signal to Interference plus
Noise Ratio (SINR) as the number of antennas and number of users per base
station grow large while maintaining a fixed ratio. Through the SINR expression
we explore the scenario where the number of users being served are comparable
to the number of antennas at the base station. The SINR explicitly captures the
effect of pilot contamination and is found to be the same as that employing a
matched filter with a pilot contaminated estimate. We also find the exact
expression for the interference suppression obtained using an MMSE filter which
is an important factor when there are significant number of users in the system
as compared to the number of antennas. In a typical set up, in terms of the
five percentile SINR, the MMSE filter is shown to provide significant gains
over matched filtering and is within 5 dB of MMSE filter with perfect channel
estimate. Simulation results for achievable rates are close to large system
limits for even a 10-antenna base station with 3 or more users per cell.Comment: Accepted for publication in IEEE Transactions on Wireless
Communication
Cellular Systems with Many Antennas: Large System Analysis under Pilot Contamination
Base stations with a large number of transmit antennas have the potential to
serve a large number of users simultaneously at higher rates. They also promise
a lower power consumption due to coherent combining at the receiver. However,
the receiver processing in the uplink relies on the channel estimates which are
known to suffer from pilot interference. In this work, we perform an uplink
large system analysis of multi-cell multi-antenna system when the receiver
employs a matched filtering with a pilot contaminated estimate. We find the
asymptotic Signal to Interference plus Noise Ratio (SINR) as the number of
antennas and number of users per base station grow large while maintaining a
fixed ratio. To do this, we make use of the similarity of the uplink received
signal in a multi-antenna system to the representation of the received signal
in CDMA systems. The asymptotic SINR expression explicitly captures the effect
of pilot contamination and that of interference averaging. This also explains
the SINR performance of receiver processing schemes at different regimes such
as instances when the number of antennas are comparable to number of users as
well as when antennas exceed greatly the number of users. Finally, we also
propose that the adaptive MMSE symbol detection scheme, which does not require
the explicit channel knowledge, can be employed for cellular systems with large
number of antennas.Comment: 5 pages, 4 figure
Self-intersecting marginally outer trapped surfaces
We have shown previously that a merger of marginally outer trapped surfaces (MOTSs) occurs in a binary black hole merger and that there is a continuous sequence of MOTSs which connects the initial two black holes to the final one. In this paper, we confirm this scenario numerically and we detail further improvements in the numerical methods for locating MOTSs. With these improvements, we confirm the merger scenario and demonstrate the existence of self-intersecting MOTSs formed in the immediate aftermath of the merger. These results will allow us to track physical quantities across the non-linear merger process and to potentially infer properties of the merger from gravitational wave observations
Giant coherence in driven systems
We study the noise-induced currents and reliability or coherence of transport
in two different classes of rocking ratchets. For this, we consider the motion
of Brownian particles in the over damped limit in both adiabatic and
non-adiabatic regimes subjected to unbiased temporally symmetric and asymmetric
periodic driving force. In the case of a time symmetric driving, we find that
even in the presence of a spatially symmetric simple sinusoidal potential,
highly coherent transport occurs. These ratchet systems exhibit giant coherence
of transport in the regime of parameter space where unidirectional currents in
the deterministic case are observed. Outside this parameter range, i.e., when
current vanishes in the deterministic regime, coherence in transport is very
low. The transport coherence decreases as a function of temperature and is a
non-monotonic function of the amplitude of driving. The transport becomes
unreliable as we go from the adiabatic to the non-adiabatic domain of
operation.Comment: 15 pages, 9 figures, replaced by the version to appear in JSTA
- …