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Abstract.

We study the noise-induced currents and reliability or coherence of transport

in two different classes of rocking ratchets. For this, we consider the motion of

Brownian particles in the over damped limit in both adiabatic and non-adiabatic

regimes subjected to unbiased temporally symmetric and asymmetric periodic driving

force. In the case of a time asymmetric driving, we find that even in the presence

of a spatially symmetric simple sinusoidal potential, highly coherent transport occurs.

These ratchet systems exhibit giant coherence of transport in the regime of parameter

space where unidirectional currents in the deterministic case are observed. Outside this

parameter range, i.e., when current vanishes in the deterministic regime, coherence in

transport is very low. The transport coherence decreases as a function of temperature

and is a non-monotonic function of the amplitude of driving. The transport becomes

unreliable as we go from the adiabatic to the non-adiabatic domain of operation.
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1. Introduction

Ratchets, Brownian motors or rectifiers are nonequilibrium systems that rectify

fluctuations in the medium to achieve directed motion [1, 2, 3, 4, 5]. The main criteria

for these systems are spatially extended periodic structures and unbiased external

fluctuations that drive the system out of equilibrium. Preferential directed motion

is possible if either the potential and/or the external fluctuations is asymmetric (broken

symmetry) [1]. Even in the presence of a spatially asymmetric potential, the principle

of detailed balance prohibits any net unidirectional current at equilibrium. Only when

the system is driven out of equilibrium, this principle no longer holds and the Brownian

particles can achieve directed motion by rectification of thermal fluctuations. These

ratchet models are found to have wide ranging applications in physical and biological

systems [1, 2, 3, 4, 5].

Considerable amount of work has been devoted to understand the nature of currents

and their reversals in different classes of ratchet models (namely flashing ratchets [2],

rocking ratchets [6], frictional ratchets [7], etc). Moreover, these ratchets or motors

are engines at the molecular scale converting input energy from a nonequilibrium

environment into useful work. Hence a lot of attention has been given to the

performance characteristics of these systems, namely thermodynamic [8, 9, 10, 11] and

generalised [12, 13] efficiencies. In recent years, another important property of these

systems is being explored, namely the reliability or coherence of transport.

The unidirectional current of Brownian particles in stochastic ratchets, however, is

always accompanied by a diffusive spread (dispersion). This spread is intimately related

to the question of reliability or quality of transport to the extent that it may completely

overshadow the ratcheting effect in a system with finite spatial extensions. For example,

if a particle on an average moves a distance L due to it’s finite average velocity, v, there

will always be an accompanying diffusive spread. If this spread is much smaller than the

distance traveled, then the motion of the particle is considered as coherent or reliable.

This, in turn, can be quantified in terms of a dimensionless number called the Péclet

number(Pe), which is the ratio of the average velocity, v, to the diffusion constant, D.

More specifically Pe = vL/D. In our studies, we take L to be the length of the period of

the relevant spatially periodic potential. Quantitatively, if Pe ≫ 2, the transport is said

to be coherent, otherwise it is incoherent or unreliable. There exist very few studies,

which address the question of reliability of transport. Pe for some models of flashing

and rocking ratchets were found to be ∼ 0.2 and ∼ 0.6 respectively [14], implying a

less reliable transport. A study on symmetric periodic potentials along with a spatially

modulated white noise showed a coherent transport with Pe less than 3. In the same

study a special kind of strongly asymmetric potential was found to increase Pe to 20 in

some range of physical parameters [15, 16]. Experimental studies in biological motors

show them to exhibit highly efficient and reliable transport with Pe ranging from 2

to 6 [17]. In a very recent work, the collective effects of coupled Brownian motors

were found to show high transport coherence [18]. Reliability of transport has also
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been studied in frictional ratchets and coherent transport is observed in a part of the

parameter space [19].

In the present work, we study the transport coherence in two different classes

of rocking ratchets. In the first case (hereafter referred to as case 1), we study a

ratchet model, where the potential is simply sinusoidal(spatially symmetric) while the

driving is temporally asymmetric. In Refs. [20, 21, 22] an unbiased discontinuous

temporally asymmetric driving has been considered. For the case of the asymmetric

drive, characterised by an additive Poissonian white shot noise with a constant bias

ensuring zero time average, analytical solutions have been obtained for the noise induced

currents [23]. The time asymmetric drive can be generated by the application of

biharmonic drive at frequencies ω and 2ω. This phenomenon is known as harmonic

mixing [24] and has been studied extensively in the context of ratchet dynamics [25],

in the problem of kink-assisted directed energy transport in soliton systems [26] etc.

Experimentally time asymmetric ratchet mechanism has been used to generate photo-

current in semiconductors [27] (for details see section 5.2 of Ref. [1]). Recently, Brownian

motors with time-asymmetric driving in a periodic potential have been realised in cold

atoms in a dissipative optical lattice [28]. In the second case (hereafter referred to as

case 2), the ratchet is characterised by a spatially asymmetric potential driven by a

temporally symmetric ac force. We report our results on the reliability of transport on

the model earlier studied by Bartussek et al [29] in the same parameter space explored by

them. Our work on transport coherence is relevant to the aforementioned experimental

studies [3, 27, 28]. One can readily perform measurements of transport coherence in

experimental set-ups akin to Ref. [28]. We show throughout this work that that

these ratchets exhibit a generic effect in the deterministic limit(absence of noise or

temperature) : if the ratchet exhibits a finite current , one observes giant coherence at

low temperatures while if the current vanishes, the associated transport coherence is

very low. Moreover, this enhanced coherence is maintained as long as currents in the

backward direction are suppressed. The suppression of backward currents also leads to

an enhanced thermodynamic efficiency of energy transduction [10, 11] in absence of

which the thermodynamic efficiency in ratchet systems is very low [30]. The transport

coherence decreases as a function of temperature and is a non-monotonic function of

the driving amplitude. Moreover, the transport becomes less reliable as we approach

the non-adiabatic domain of operation.

2. Model:

2.1. Case 1 : spatially symmetric potential with temporally asymmetric driving

The starting point of our equation is the Brownian motion of an overdamped particle in

presence of a potential and a driving force which can be described by the overdamped

Langevin equation [31].

γẋ = −∂x[V (x) − xF (t)] + ξ(t) (1)
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Figure 1. Illustration of time asymmetric force for time period τ and temporal

asymmetry factor ǫ

The thermal noise is modeled by a zero mean Gaussian white noise ξ(t), with correlation

〈ξ(t)ξ(t′)〉 = 2kBTγδ(t − t′). The periodic potential is chosen as V (x) = V0 sin(x).

Since V (x) is symmetric, to generate unidirectional currents, one has to apply a time

asymmetric driving. F (t) is the externally applied time periodic driving force, whose

average over a time period is zero [10, 20, 21] and is given by

F (t) =
1 + ǫ

1 − ǫ
F0, (nτ ≤ t < nτ +

1

2
τ(1 − ǫ)), (2)

= − F0, (nτ +
1

2
τ(1 − ǫ) < t ≤ (n + 1)τ),

Here, the parameter ǫ signifies the temporal asymmetry in the periodic forcing while τ

is the time-period and n = 0, 1, 2, . . . is an integer. The force profile is shown in Fig. 1.

2.2. Case 2 : spatially asymmetric potential with temporally symmetric driving

We consider the same ratchet model as considered by Bartussek et al [29] with the

potential V (x) = −V0

k
[sin(kx)+ 0.25 sin(2kx)] with k = 2π. We now impose a periodic

unbiased ac force, F (t) = F0sin(ωt). The underlying asymmetric potential breaks the

symmetry of the system and generates a current .

3. Numerical details

The analytical expressions for the currents(j) and diffusion coefficient(D) can only be

obtained in the adiabatic or quasi static limit , i.e., when the frequency of the driving

force is small compared to the other frequency scales in the problem [10, 32]. In such a

situation, the system can be considered to be in a steady state at each instant of time.

For the general case, we are forced to take recourse to numerical simulations [33, 34]. In

this work, we have used Langevin simulations to evaluate j and D. We use the Huen’s

method in these simulations[33] and calculate the current in the asymptotic regime. The

expressions for j and D are given by,

j =

〈

x(t) − x(t0)

t − t0

〉

(3)
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and

D = lim
t→∞

1

2t

[

〈x2(t)〉 − 〈x(t)〉2
]

(4)

Here 〈. . .〉 denotes ensemble averaging. We discard the initial transients (t0 = 500τ)

and then evolve the system for t = 25000τ . In each case the time-step is taken equal to

0.01 and the averaging is done over 5000 ensembles.

In all the figures to follow, the physical quantities taken are in dimensionless

units [16]. Energies are scaled with respect to the potential strength, V0; lengths

are scaled with respect to the spatial period of the potential. Also, the frequency

of oscillation is scaled with respect to the friction coefficient and F0 ≡ FL

V0

. As a check

we have reproduced the main results of Refs. [29, 35, 36]

4. Results and Discussion

4.1. case 1

Fig. 2 shows the variation of j, D and Pe versus force. In our work, current(j) and

velocity(v) carry the same meaning. We have taken the time period τ = 1000 to be very

large so that we are in the quasi static limit. For a simple potential V (x) = V0 sin x

in the presence of a static force (F0), in the deterministic limit current flows only when

F0 crosses a critical threshold(Fc), namely, F0 > Fc = 1. Beyond the critical threshold,

barriers to the motion in the forward direction disappear. Consequently, the particle is in

the running state (i.e., the particle is free to move). Below the critical field, the particle

experiences barriers in the direction of the applied field and hence at temperatures

T → 0, particle will be trapped at a local minimum of the potential (i.e., in a locked

state). It is also known that giant diffusion arises around the “dynamical bottleneck”

at F0 = Fc = 1 and is expected as a fallout of the instability between the locked

state and the running state [36, 37, 38]. The peaks in the D versus force curve around

Fc ≈ 1, gets sharpened as the temperature is reduced. At high temperatures, due to

thermal smearing, the peaks become broader. In the adiabatic limit, we can consider

the total current to arise from the sum of the contributions of the fraction of the current

when the field is in the forward direction and the fraction of the current when the

field is in the backward direction [19, 32]. In the same limit, we can also consider the

total diffusion coefficient to arise from the sum of similar contributions of the diffusion

coefficients from force fields in the forward and backward directions. As we increase the

amplitude of the temporal force F0, in the deterministic limit (T → 0 limit), current

in the forward direction starts flowing when 1+ǫ

1−ǫ
F0 > 1 or F0 > 1−ǫ

1+ǫ
. We have chosen

ǫ = 0.8, hence, one observes significant currents only above F0 > 0.11. As we increase

the amplitude F0, j increases till F0 becomes of the order of 1. Up to this limit, current

in the backward direction is absent (as the force applied in the backward direction is

F0 which is independent of ǫ). Thus in the range of F0 between 1+ǫ

1−ǫ
and 1, the current

increases monotonically. Beyond F0 > 1 the barriers to motion for a particle in both
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Figure 2. Plot of (a) j (b) D and (c) Pe (from above) versus F0 at ǫ = 0.8 for

various values of T in the temporally asymmetric driving case in the adiabatic limit

(τ = 1000).

directions disappear and consequently current decreases as we increase F0 further. The

temperature only broadens the peak and the value of F0 at which the peak appears,

shifts to the left. This is because, temperature can facilitate current in the backward

direction, even when barriers are present.

In fig. 2(b), we have plotted D (scaled with respect to the bare diffusion coefficient,

D0 ≡ kBT/γ) versus the driving force F0. For very small values of the driving force,

i.e, when F0 ≪ 1, D ≪ D0 due to the presence of barriers in motion in both directions.

Two peaks are observed at F0 ≈ 0.1 and 1, which correspond to the vanishing of barriers

for forward and backward directions respectively (i.e., instability points) as discussed

earlier. The diffusion peak around F0 = 1 is pronounced and has a value greater than
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1, i.e., D ≫ D0. This is an anticipated effect [36, 37]. The peak broadens with the rise

in temperature. However, unlike the peak in j, it does not shift with temperature [36].

We notice clearly from fig. 2(a) and fig. 2(b) that in the range between F0 ≈ 0.1

and 1, enhanced currents are accompanied by minimal diffusion. As a consequence it

is in this region, that one observes enhanced or giant transport coherence (Pe ≈ 450

for T = 0.05 around F0 ≈ 0.6). The observed values are very much larger than those

obtained for other ratchet systems [14, 15, 16, 19]. It may be noted that, in the regime

of giant coherence, current in the backward direction is suppressed as mentioned earlier.

Precisely in this regime of F0, it has been shown that the thermodynamic efficiency

(η) [10] and the generalised efficiency [39] is quite high, even though the ratchet operates

in an irreversible mode.

 0
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F0

j
D/D0
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Figure 3. Plot of j, D and Pe versus F0 at ǫ = 0.8 and τ = 5 (non-adiabatic limit) at

T = 0.2 in the temporally asymmetric driving case. The j has been scaled by a factor

of 10.

We now very briefly discuss the nature of j, D and Pe as a function of F0 in the

non-adiabatic limit. For this, we have plotted in fig. 3 the variation of j, D and Pe

versus F0 for τ = 5 at T = 0.2 and ǫ = 0.8. We notice that j exhibits a peak shifted

to the right as compared to the graph in the adiabatic limit i.e., fig. 2(a). The currents

are very low for small F0, even for the regime around (F0 ≥ 0.11). In this regime,

particle cannot take advantage of vanishing of barriers in the forward direction as it

will not be able to traverse a distance of half a period in the duration in which the

force is in positive direction, i.e., force reverses its sign before the particle could traverse

a distance of half a period. However, on increasing the value of F0, the particle will

naturally take advantage of the vanishing barriers. Hence, peak shifts towards the right.

Unlike adiabatic case, D does not exhibit a two-peak structure. The peak at smaller

value of F0 ≈ 0.11 disappears. Here too the particle does not take advantage of the

vanishing of barriers in the forward motion. Pe exhibits values which are very much

smaller than those obtained in the adiabatic limit. Hence, coherence in transport is

reduced as the time-period is reduced.

Fig. 4 shows the variation of j, D, and Pe with respect to T (scaled with respect

to V0, the strength of the potential) for various values of ǫ at F0 = 0.3 . The j and D
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Figure 4. Plot of (a) j (b) D and (c) Pe (from above) versus T at F0 = 0.3 for

various values of ǫ in the temporally asymmetric driving case, in the adiabatic limit

(τ = 1000).

versus T curves show the crucial role played by the temporal asymmetry factor ǫ. The

higher values of current are obtained for higher ǫ. For ǫ = 0.4 at F0 = 0.3, barriers for

the motion of the particle are present in both the directions and as a result the current

vanishes in the zero temperature limit. Thus, for intermediate values of temperature,

a peak is witnessed. For other values of ǫ, namely, ǫ = 0.6 and ǫ = 0.8, barriers to

the motion in the forward direction vanish but are present in the backward direction.

Hence, at zero temperature, we get a finite current which vanishes at high temperature.

For ǫ = 0.8 the current decreases monotonically whereas for ǫ = 0.6 the current exhibits

a small peak.

The origin of the temperature axis in fig. 4(b) is at T = 0.04. The scaled
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diffusion coefficient (D/D0) exhibits a minima as a function of temperature in the range

considered (for ǫ = 0.6, 0.8). This is due to the fact that the scale D0 ≡ kBT/γ.

We have observed that without this scaling factor, D increases monotonically with

temperature, starting at zero at T = 0. In the high temperature limit, T > 1, (i.e.,

when T ≫ V0), D/D0 → 1 as anticipated. At low temperatures, D/D0 exhibits a

non-monotonic behaviour as a function of ǫ. Other quantities like the thermodynamic

efficiency [10] and the generalised efficiency [39] also exhibit a non-monotonic behaviour

as a function of the temporal asymmetry factor ǫ. This is not surprising as there are two

competing effects : as one increases ǫ, the barriers in the forward direction are reduced

while the fraction of the time period during which the particle is subject to a positive

force is also decreased.

From fig. 4(c) we see that Pe diminishes as we increase the temperature. Higher

the ǫ value, higher is the coherence. This enhanced coherence is sustained over a large

temperature regime. We would like to emphasise that at very low temperatures (

T → 0), finite current results for a range of parameters. However, D tends to zero

in the same range. As a result, Pe exhibits a divergent behaviour. Hence, to avoid

numerical errors, the origin of the temperature axis is chosen as T = 0.04. It should be

noted that for ǫ = 0.4, current in the deterministic limit vanishes as can be observed in

fig. 4(a) and consequently transport coherence is very low as seen from fig. 4(c). These

results bring out the generic effect mentioned in Section 1.
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Figure 5. Plot of Pe versus T at ǫ = 0.8 and F0 = 0.3 for various values of the time

period (τ) in the temporally asymmetric driving case.

In fig. 5, we show the variation of Pe for a fixed value of ǫ = 0.8, as a function

of time-period. The origin of the temperature axis is at T = 0.15. It is clear, that

the transport which is coherent in the adiabatic limit (τ = 1000) loses its coherence

as the non-adiabatic limit is reached. This conclusion about the superior reliability of

transport of the ratchet at the adiabatic limit is generally true(we have verified this

separately).
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4.2. case 2

Now we turn to case 2 , which has been studied extensively for the nature of currents

by Bartussek et al [29]. In fig. 6, we have plotted D and Pe as a function of F0
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Figure 6. Plot of (a) j (b) D and (c) Pe (from above) versus F0 at T = 0.1 for the

temporally symmetric driving case.

at T = 0.1 for various frequencies ω. In fig. 6(a) we reproduce the same results as

obtained in fig. 1(b) of Ref. [29]. ω = 0.25 corresponds to the adiabatic regime. Here,

current flows in a positive direction and exhibits a peak. During the fraction of the

time-period when force is in positive direction, the particle experiences a smaller barrier

in the forward direction as opposed to the fraction of the period when force is in the

negative direction and particle experiences a higher potential barrier. During each half

cycle particle traverses a distance much larger than the spatial period of the potential.

In this regime, the particle takes advantage of the presence of anisotropy in the potential
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and hence positive current arises [1]. As we approach the non-adiabatic limit (ω = 7,

ω = 10), we observe multiple current reversals. For details see Refs. [29, 40].

In fig 6(b), we have plotted D as a function of F0 for various frequencies. D/D0

starts from a finite value at F = F0, and asymptotically approaches 1 as expected. Some

local maxima are observed at finite driving frequencies. These features are also seen for

the case of symmetric periodic potential driven by a temporally symmetric periodic force

as discussed in Refs. [35, 38]. These peaks are attributed to optimised enhancement of

the escape rate by modulation for a given noise strength. As discussed in Refs. [35, 38],

for certain values of the driving force (or forces), the position probability peak of the

particles may just happen to be on the top of the potential barrier and the diffusion

is naturally more than there would have been if this peak had been located elsewhere

(especially if it was at the potential minimum for example).

In fig. 6(c) we have plotted corresponding Pe as a function of F0. We readily notice

that even in the adiabatic limit, transport is incoherent since values of Pe ≈ 0.45 are

obtained which further decrease as we cross over to the non-adiabatic limit . Therefore

the noise induced transport in this system is completely incoherent in the range of

parameters considered here. This range corresponds to the current being zero in the

deterministic regime.

We would like to emphasise that the phenomenon of current reversal in ratchets

plays a major role in devising novel separation techniques for nanoparticles [4]. Once

the current reversal as a function of any parameter is established, it follows readily

that current reversals can be observed by varying other parameters in the system [1, 5].

In these devices, particles with different masses move in the opposite direction which

can be readily separated. However, we notice from the figure that, around the current

reversals, the Péclet numbers are quite small and transport is incoherent.

In fig. 7 we plot the variation of Pe as a function of F0 in the adiabatic

limit(ω = 0.25) for two fixed values of T = 0.01 and T = 0.1. The inset shows

the variation of j as a function of F0 at T = 0.01 and T = 0.1. At T = 0.01, we are

close to the deterministic regime, where the values of j and Pe are expected to be large.

The figure corresponding to T = 0.01 shows a higher value of Pe. In the adiabatic

limit the total current is expected to be the sum of the current contributions due to

the forward and backward driving. It is readily seen from the figure, that the value of

Pe in the curve for which T = 0.01, is high above F0 ≈ 0.72, i.e, when the barriers

to the current(inset) in the forward direction are absent. The current steadily increases

with driving until F0 ≈ 1.5 where a peak in current is observed. However, beyond this

value of F0, the barriers to the motion in the other direction also disappear and hence

the net current starts decreasing as can be seen from the inset of fig 7. It is notable

that the value of Pe in the observed regime beyond the value of F0 ≈ 0.72 is ≫ 2

and in fact seen to be as high as 16. In the region F0 < 0.72, where the current in

the low T limit vanishes, the transport is incoherent. For T = 0.1, the particles can

take the aid of significant thermal fluctuations to cross the barriers in both directions.

Hence, the current values at T = 0.1 for F0 > 0.72 are much lower than those observed
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for T = 0.01. Therefore, the associated Pe values are much lower for T = 0.1 and the

transport is seen to be completely unreliable in fig. 7.
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Figure 7. Plot of Pe and j(inset) versus F0 at T = 0.01 and T = 0.1 in the

temporally asymmetric driving case for ω = 0.25(adiabatic limit).
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Figure 8. Plot of Pe and j(inset) versus T at F0 = 0.9 and F0 = 1.25 in the

temporally asymmetric driving case for ω = 0.25(adiabatic limit).

In fig. 8 we plot the variation of Pe and j (inset) as a function of T at two fixed values

of F0 = 0.9 and F0 = 1.25. We have restricted ourselves to the adiabatic(ω = 0.25)

domain of operation, where the values of j and Pe are expected to be large. For these

values of F0, a finite current results at T = 0, as shown in the inset of fig. 8. Hence,

giant coherence is expected at low temperatures. To avoid divergence of Pe, the origin

of the T axis is chosen at T = 0.0025. With increase in T , the transport coherence

diminishes.

In fig. 9, we have plotted j, D and Pe as a function of T for various frequencies

mentioned in fig 9 at F0 = 0.5. Fig. 9(a) reproduces the currents of fig. 1(b) of Ref. [29].

In the adiabatic limit (ω = 0.25), current remains positive and exhibits a peak. Current

in the non-adiabatic limit (ω = 4.0 and ω = 7.0) starts with a negative value and

exhibits current reversals [29, 40]. D saturates to a value D/D0 ≈ 1 in the high

temperature limit. Depending on the temperature regime, whether D is a monotonic
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Figure 9. Plot of (a) j (b) D and (c) Pe (from above) versus T at F0 = 0.5 for the

temporally symmetric driving case.

or non-monotonic function of frequency can be inferred from fig. 9(b). Corresponding

Pe are plotted in fig 9(c). Similar to the behaviour seen in fig. 6(c), we observe that

as we go from the adiabatic to the non-adiabatic regime, transport becomes incoherent.

Beyond T = 0.1, the transport becomes completely unreliable (Pe ≪ 2).

5. Conclusions

We have studied the Brownian dynamics of a particle in a symmetric sinusoidal potential

in presence of time-symmetric unbiased forcing. We have shown that the resulting

fluctuation induced currents exhibit giant coherence in transport. This is observed in

the parameter space where currents are finite in the deterministic limit. Moreover,
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this coherence can be sustained over a large temperature range and variations in other

relevant physical parameters. Transport is most coherent in the adiabatic limit and

decreases as we approach the non-the adiabatic limit. The coherence in transport

reduces as a function of temperature and is a non-monotonic function of the amplitude

of driving.

In general, the ratchet systems which favour currents in the forward direction and

suppresses currents in the backward direction are expected to show enhanced coherence,

other examples being flashing ratchets where two periodic states are displaced with re-

spect to each other [11]. The ratchet systems at finite driving frequencies studied in

this work exhibit several complex features in the nature of current and diffusion coef-

ficient in the deterministic limit. Current exhibits quantisation (plateaus) associated

with phase or frequency locking behaviour as a function of the amplitude of the driving

force and other parameters [29, 40, 41, 42]. Correspondingly, diffusion exhibits giant

peaks and crests in presence of small noise. These curves develop oscillatory features

(namely resonances and antiresonances) in the presence of small noise (multiple peaks in

diffusion and currents can be observed). These intriguing features can be attributed to

the complex dynamics of the particle which arises due to the combined effects between

non-linearity, frequency of driving and noise [42]. However, all of these complex features

are not robust in the presence of finite noise, the subject matter of which is under study

vis-a-vis the coherence in transport.
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