Base stations with a large number of transmit antennas have the potential to
serve a large number of users at high rates. However, the receiver processing
in the uplink relies on channel estimates which are known to suffer from pilot
interference. In this work, making use of the similarity of the uplink received
signal in CDMA with that of a multi-cell multi-antenna system, we perform a
large system analysis when the receiver employs an MMSE filter with a pilot
contaminated estimate. We assume a Rayleigh fading channel with different
received powers from users. We find the asymptotic Signal to Interference plus
Noise Ratio (SINR) as the number of antennas and number of users per base
station grow large while maintaining a fixed ratio. Through the SINR expression
we explore the scenario where the number of users being served are comparable
to the number of antennas at the base station. The SINR explicitly captures the
effect of pilot contamination and is found to be the same as that employing a
matched filter with a pilot contaminated estimate. We also find the exact
expression for the interference suppression obtained using an MMSE filter which
is an important factor when there are significant number of users in the system
as compared to the number of antennas. In a typical set up, in terms of the
five percentile SINR, the MMSE filter is shown to provide significant gains
over matched filtering and is within 5 dB of MMSE filter with perfect channel
estimate. Simulation results for achievable rates are close to large system
limits for even a 10-antenna base station with 3 or more users per cell.Comment: Accepted for publication in IEEE Transactions on Wireless
Communication