1,185 research outputs found
Crucial role of sidewalls in velocity distributions in quasi-2D granular gases
Our experiments and three-dimensional molecular dynamics simulations of
particles confined to a vertical monolayer by closely spaced frictional walls
(sidewalls) yield velocity distributions with non-Gaussian tails and a peak
near zero velocity. Simulations with frictionless sidewalls are not peaked.
Thus interactions between particles and their container are an important
determinant of the shape of the distribution and should be considered when
evaluating experiments on a tightly constrained monolayer of particles.Comment: 4 pages, 4 figures, Added reference, model explanation charified,
other minor change
Composite repetition-aware data structures
In highly repetitive strings, like collections of genomes from the same
species, distinct measures of repetition all grow sublinearly in the length of
the text, and indexes targeted to such strings typically depend only on one of
these measures. We describe two data structures whose size depends on multiple
measures of repetition at once, and that provide competitive tradeoffs between
the time for counting and reporting all the exact occurrences of a pattern, and
the space taken by the structure. The key component of our constructions is the
run-length encoded BWT (RLBWT), which takes space proportional to the number of
BWT runs: rather than augmenting RLBWT with suffix array samples, we combine it
with data structures from LZ77 indexes, which take space proportional to the
number of LZ77 factors, and with the compact directed acyclic word graph
(CDAWG), which takes space proportional to the number of extensions of maximal
repeats. The combination of CDAWG and RLBWT enables also a new representation
of the suffix tree, whose size depends again on the number of extensions of
maximal repeats, and that is powerful enough to support matching statistics and
constant-space traversal.Comment: (the name of the third co-author was inadvertently omitted from
previous version
Successful identification of pathogens by polymerase chain reaction (PCR)-based electron spray ionization time-of-flight mass spectrometry (ESI-TOF-MS) in culture-negative periprosthetic joint infection.
BACKGROUND: The diagnosis of periprosthetic joint infection poses many challenges, one of which is the difficulty of isolating the infecting organism. Recently, a sophisticated modality (the Ibis Biosciences T5000 biosensor system) has been introduced that uses pan-domain primers in a series of polymerase chain reactions (PCRs) to identify and speciate essentially all bacteria and fungi as well as to identify key antibiotic resistance genes. We investigated the role of the Ibis in identifying infecting organisms in cases of known and suspected periprosthetic joint infection.
METHODS: Synovial fluid specimens were collected prospectively from eighty-two patients undergoing eighty-seven arthroplasty procedures (sixty-five knee revisions, fifteen hip revisions, and seven primary knee arthroplasties) and were sent for both conventional culture and Ibis analysis. The surgeon\u27s clinical determination of the cause for revision arthroplasty was failure due to infection in twenty-three cases and noninfectious failure in fifty-seven cases.
RESULTS: In the twenty-three cases that were considered on clinical grounds to involve a periprosthetic joint infection, the Ibis detected the same pathogen isolated by conventional culture in seventeen of eighteen cases and also detected one or more organisms in four of the five culture-negative cases. In addition, the Ibis detected organisms in fifty (88%) of the fifty-seven cases in which revision arthroplasty was performed for a presumed noninfectious failure.
CONCLUSIONS: The Ibis technology was not only effective at detecting organisms in cases of suspected periprosthetic joint infection in which cultures were negative, but it also suggested that many of the revision arthroplasty cases that have previously been considered to be purely aseptic may have a component of unrecognized, subclinical infection
Pressure Modulator Radiometer (PMR) tests
The pressure modulator technique was evaluated for monitoring pollutant gases in the Earth's atmosphere of altitude levels corresponding to the mid and lower troposphere. Using an experimental set up and a 110 cm sample cell, pressure modulator output signals resulting from a range of gas concentrations in the sample cell were examined. Then a 20 cm sample cell was modified so that trace gas properties in the atmosphere could be simulated in the laboratory. These gas properties were measured using an infrared sensor
Onset of Patterns in an Ocillated Granular Layer: Continuum and Molecular Dynamics Simulations
We study the onset of patterns in vertically oscillated layers of
frictionless dissipative particles. Using both numerical solutions of continuum
equations to Navier-Stokes order and molecular dynamics (MD) simulations, we
find that standing waves form stripe patterns above a critical acceleration of
the cell. Changing the frequency of oscillation of the cell changes the
wavelength of the resulting pattern; MD and continuum simulations both yield
wavelengths in accord with previous experimental results. The value of the
critical acceleration for ordered standing waves is approximately 10% higher in
molecular dynamics simulations than in the continuum simulations, and the
amplitude of the waves differs significantly between the models. The delay in
the onset of order in molecular dynamics simulations and the amplitude of noise
below this onset are consistent with the presence of fluctuations which are
absent in the continuum theory. The strength of the noise obtained by fit to
Swift-Hohenberg theory is orders of magnitude larger than the thermal noise in
fluid convection experiments, and is comparable to the noise found in
experiments with oscillated granular layers and in recent fluid experiments on
fluids near the critical point. Good agreement is found between the mean field
value of onset from the Swift-Hohenberg fit and the onset in continuum
simulations. Patterns are compared in cells oscillated at two different
frequencies in MD; the layer with larger wavelength patterns has less noise
than the layer with smaller wavelength patterns.Comment: Published in Physical Review
Nitrogen-fixing symbiotic bacteria act as a global filter for plant establishment on islands
Island biogeography has classically focused on abiotic drivers of species distributions. However, recent work has highlighted the importance of mutualistic biotic interactions in structuring island floras. The limited occurrence of specialist pollinators and mycorrhizal fungi have been found to restrict plant colonization on oceanic islands. Another important mutualistic association occurs between nearly 15,000 plant species and nitrogen-fixing (N-fixing) bacteria. Here, we look for evidence that N-fixing bacteria limit establishment of plants that associate with them. Globally, we find that plants associating with N-fixing bacteria are disproportionately underrepresented on islands, with a 22% decline. Further, the probability of N-fixing plants occurring on islands decreases with island isolation and, where present, the proportion of N-fixing plant species decreases with distance for large, but not small islands. These findings suggest that N-fixing bacteria serve as a filter to plant establishment on islands, altering global plant biogeography, with implications for ecosystem development and introduction risks
Lightweight Lempel-Ziv Parsing
We introduce a new approach to LZ77 factorization that uses O(n/d) words of
working space and O(dn) time for any d >= 1 (for polylogarithmic alphabet
sizes). We also describe carefully engineered implementations of alternative
approaches to lightweight LZ77 factorization. Extensive experiments show that
the new algorithm is superior in most cases, particularly at the lowest memory
levels and for highly repetitive data. As a part of the algorithm, we describe
new methods for computing matching statistics which may be of independent
interest.Comment: 12 page
Bloch electron in a magnetic field and the Ising model
The spectral determinant det(H-\epsilon I) of the Azbel-Hofstadter
Hamiltonian H is related to Onsager's partition function of the 2D Ising model
for any value of magnetic flux \Phi=2\pi P/Q through an elementary cell, where
P and Q are coprime integers. The band edges of H correspond to the critical
temperature of the Ising model; the spectral determinant at these (and other
points defined in a certain similar way) is independent of P. A connection of
the mean of Lyapunov exponents to the asymptotic (large Q) bandwidth is
indicated.Comment: 4 pages, 1 figure, REVTE
Bethe ansatz for the Harper equation: Solution for a small commensurability parameter
The Harper equation describes an electron on a 2D lattice in magnetic field
and a particle on a 1D lattice in a periodic potential, in general,
incommensurate with the lattice potential. We find the distribution of the
roots of Bethe ansatz equations associated with the Harper equation in the
limit as alpha=1/Q tends to 0, where alpha is the commensurability parameter (Q
is integer). Using the knowledge of this distribution we calculate the higher
and lower boundaries of the spectrum of the Harper equation for small alpha.
The result is in agreement with the semiclassical argument, which can be used
for small alpha.Comment: 17 pages including 5 postscript figures, Latex, minor changes, to
appear in Phys.Rev.
- …