24 research outputs found

    Vacuum ultraviolet excitation luminescence spectroscopy of few-layered MoS 2

    Get PDF
    We report on vacuum ultraviolet (VUV) excited photoluminescence (PL) spectra emitted from a chemical vapor deposited MoS₂ few-layered film. The excitation spectrum was recorded by monitoring intensities of PL spectra at ~1.9 eV. A strong wide excitation band peaking at 7 eV was found in the excitation. The PL excitation band is most intensive at liquid helium temperature and completely quenched at 100 K. Through first-principles calculations of photoabsorption in MoS₂, the excitation was explicated and attributed to transitions of electrons from p- and d- type states in the valence band to the d- and p-type states in the conduction band. The obtained photon-in/photon-out results clarify the excitation and emission behavior of the low dimensional MoS₂ when interacting with the VUV light sources

    Electrochemical reaction in single layer MoS2: nanopores opened atom by atom

    Get PDF
    Ultrathin nanopore membranes based on 2D materials have demonstrated ultimate resolution toward DNA sequencing. Among them, molybdenum disulphide (MoS2) shows long-term stability as well as superior sensitivity enabling high throughput performance. The traditional method of fabricating nanopores with nanometer precision is based on the use of focused electron beams in transmission electron microscope (TEM). This nanopore fabrication process is time-consuming, expensive, not scalable and hard to control below 1 nm. Here, we exploited the electrochemical activity of MoS2 and developed a convenient and scalable method to controllably make nanopores in single-layer MoS2 with sub-nanometer precision using electrochemical reaction (ECR). The electrochemical reaction on the surface of single-layer MoS2 is initiated at the location of defects or single atom vacancy, followed by the successive removals of individual atoms or unit cells from single-layer MoS2 lattice and finally formation of a nanopore. Step-like features in the ionic current through the growing nanopore provide direct feedback on the nanopore size inferred from a widely used conductance vs. pore size model. Furthermore, DNA translocations can be detected in-situ when as-fabricated MoS2 nanopores are used. The atomic resolution and accessibility of this approach paves the way for mass production of nanopores in 2D membranes for potential solid-state nanopore sequencing.Comment: 13 pages, 4 figure

    Detecting the translocation of DNA through a nanopore using graphene nanoribbons

    Get PDF
    Solid-state nanopores can act as single-molecule sensors and could potentially be used to rapidly sequence DNA molecules. However, nanopores are typically fabricated in insulating membranes that are as thick as 15 bases, which makes it difficult for the devices to read individual bases. Graphene is only 0.335 nm thick (equivalent to the spacing between two bases in a DNA chain) and could therefore provide a suitable membrane for sequencing applications. Here, we show that a solid-state nanopore can be integrated with a graphene nanoribbon transistor to create a sensor for DNA translocation. As DNA molecules move through the pore, the device can simultaneously measure drops in ionic current and changes in local voltage in the transistor, which can both be used to detect the molecules. We examine the correlation between these two signals and use the ionic current measurements as a real-time control of the graphene-based sensing device

    ABOUT THE PRINCIPLES OF NEW EDITION OF THE SUBSOIL CODE OF UKRAINE

    Get PDF
    The author analyzed the main directions and principles of the new edition of the Codex of Ukraine on Subsoil and related legislative and regulatory acts, substantiated need for the introduction of the new edition of the Codex. The article shows that a number of provisions in the a new edition proposed by the Ministry of Environmental Protection, is unacceptable because it contradicts the Constitution of Ukraine. Specific proposals on the improvement of individual sections of the Codex

    [Autosexing maternal form of meat-type chickens] Аутосексная материнская форма мясных кур

    No full text
    Бондаренко, Ю.В.; Сергеева, В.Д.; Куранова, Э.Н.; Романов, М.Н.; Красножон, С.А. Создание аутосексной материнской родительской формы мясных кур, обеспечивающей возможность разделения суточных цыплят по полу в зависимости от скорости роста зачатков маховых перьев (локус K). Опыты проведены в опытном хозяйстве им. Ф.Э. Дзержинского Крымского отделения УкрНИИП. Исходным материалом при создании аутосексной материнской формы мясных кур послужили линия Б-9 кросса Бройлер-6 и линия П-3 американского происхождения (фирма "Арбор Эйкрз"). Обе линии относятся к породе плимутрок. Типы оперяемости цыплят (локус K) определяли в течение первых суток жизни по относительной длине зачатков маховых перьев и кроющих перьев по Самсу и МакГиббону. У ранооперяющихся цыплят (ген k) зачатки маховых перьев длиннее, чем кроющих. Всего в суточном возрасте фенотипировано 35290 особей линии П-3,12793 - линии Б-9 и 1738 гибридных цыплят - Б-9 × П-3. Точность аутосексирования определяли по результатам убоя и вскрытия брюшной полости птицы в целях обследования их внутренних половых органов. Всего исследовано 458 цыплят. Разработаны следующие методические приемы выведения аутосексных комбинаций кур: выделение трех подтипов поздней оперяемости суточного молодняка, сочетание отбора цыплят по фенотипу с отбором производителей по генотипу, определение генотипа отцов по локусу K при получении племенного молодняка. Выведена аутосекская материнская форма мясных кур, обеспечивающая 97,25% точности деления гибридных цыплят по полу. Куры линии П-3 - носители генов ранней и поздней оперяемости цыплят - обладали сходными показателями продуктивности. От кур аутосексной материнской формы Б-9 × П-3 за 420 дн. жизни получено по 152 яйца на среднюю несушку. Выход цыплят на несушку составил 115 гол., что на 5,7 гол. меньше, чем у кур линии П-3. (Л. Благообразова

    Electrochemical Reaction in Single Layer MoS<sub>2</sub>: Nanopores Opened Atom by Atom

    No full text
    Ultrathin nanopore membranes based on 2D materials have demonstrated ultimate resolution toward DNA sequencing. Among them, molybdenum disulfide (MoS<sub>2</sub>) shows long-term stability as well as superior sensitivity enabling high throughput performance. The traditional method of fabricating nanopores with nanometer precision is based on the use of focused electron beams in transmission electron microscope (TEM). This nanopore fabrication process is time-consuming, expensive, not scalable, and hard to control below 1 nm. Here, we exploited the electrochemical activity of MoS<sub>2</sub> and developed a convenient and scalable method to controllably make nanopores in single-layer MoS<sub>2</sub> with subnanometer precision using electrochemical reaction (ECR). The electrochemical reaction on the surface of single-layer MoS<sub>2</sub> is initiated at the location of defects or single atom vacancy, followed by the successive removals of individual atoms or unit cells from single-layer MoS<sub>2</sub> lattice and finally formation of a nanopore. Step-like features in the ionic current through the growing nanopore provide direct feedback on the nanopore size inferred from a widely used conductance vs pore size model. Furthermore, DNA translocations can be detected in situ when as-fabricated MoS<sub>2</sub> nanopores are used. The atomic resolution and accessibility of this approach paves the way for mass production of nanopores in 2D membranes for potential solid-state nanopore sequencing
    corecore