37 research outputs found

    Monsoons, ITCZs and the concept of the global monsoon

    Get PDF
    Earth's tropical and subtropical rainbands, such as Intertropical Convergence Zones (ITCZs) and monsoons, are complex systems, governed by both large‐scale constraints on the atmospheric general circulation and regional interactions with continents and orography, and coupled to the ocean. Monsoons have historically been considered as regional large‐scale sea breeze circulations, driven by land‐sea contrast. More recently, a perspective has emerged of a Global Monsoon, a global‐scale solstitial mode that dominates the annual variation of tropical and subtropical precipitation. This results from the seasonal variation of the global tropical atmospheric overturning and migration of the associated convergence zone. Regional subsystems are embedded in this global monsoon, localized by surface boundary conditions. Parallel with this, much theoretical progress has been made on the fundamental dynamics of the seasonal Hadley cells and convergence zones via the use of hierarchical modeling approaches, including aquaplanets. Here we review the theoretical progress made, and explore the extent to which these advances can help synthesize theory with observations to better understand differing characteristics of regional monsoons and their responses to certain forcings. After summarizing the dynamical and energetic balances that distinguish an ITCZ from a monsoon, we show that this theoretical framework provides strong support for the migrating convergence zone picture and allows constraints on the circulation to be identified via the momentum and energy budgets. Limitations of current theories are discussed, including the need for a better understanding of the influence of zonal asymmetries and transients on the large‐scale tropical circulation.This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordMet Offic

    Droughts over Homogeneous Regions of India: 1871–-1990

    Get PDF
    The summer monsoon (June through September), or southwest seasonal rains, contribute 78% of India’s annual rainfall. It is the greatest climatic water resource of India. The country’s agriculture and food production depend on these rains. Rainfed farming areas in India account for about 70% of the total arable land in the country, with nearly 100 million ha depending on the monsoon rains. The rains also contribute to power generation and industrial production

    Trends in extreme daily rainfall and temperature indices over South Asia

    No full text
    Over the last few decades, weather and climate extremes have become a major focus of researchers, the media and general public due to their damaging effects on human society and infrastructure. Trends in indices of climate extremes are studied for the South Asian region using high-quality records of daily temperature and precipitation observations. Data records from 210 (265) temperature (precipitation) observation stations are analysed over the period 1971-2000 (1961-2000). Spatial maps of station trends, time series of regional averages and frequency distribution analysis form the basis of this study. Due to the highly diverse geography of the South Asian region, the results are also described for some specific regions, such as the island of Sri Lanka; the tropical region (excluding Sri Lanka); the Greater Himalayas above 35°N, the Eastern Himalayas (Nepal) and the Thar Desert. Generally, changes in the frequency of temperature extremes over South Asia are what one would expect in a warming world; warm extremes have become more common and cold extremes less common. The warming influence is greater in the Eastern Himalayas compared with that in the Greater Himalayas. The Thar Desert also shows enhanced warming, but increases are mostly less than in the Eastern Himalayas. Changes in the indices of extreme precipitation are more mixed than those of temperature, with spatially coherent changes evident only at relatively small scales. Nevertheless, most extreme precipitation indices show increases in the South Asia average, consistent with globally averaged results. The indices trends are further studied in the context of Atmospheric Brown Clouds (ABCs) over the region. Countries falling within the ABC hotspot namely Indo-Gangetic Plain (IGP) have shown a different behaviour on the trends of extreme indices compared with the parts outside this hotspot. IGP has increased temperature and decreased rainfall and tally closely with the actual trends
    corecore