209 research outputs found

    Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance

    Get PDF
    Interest in plasma actuators as active flow control devices is growing rapidly due to their lack of mechanical parts, light weight and high response frequency. Although the flow induced by these actuators has received much attention, the effect that the external flow has on the performance of the actuator itself must also be considered, especially the influence of unsteady high-speed flows which are fast becoming a norm in the operating flight envelopes. The primary objective of this study is to examine the characteristics of a dielectric barrier discharge (DBD) plasma actuator when exposed to an unsteady flow generated by a shock tube. This type of flow, which is often used in different studies, contains a range of flow regimes from sudden pressure and density changes to relatively uniform high-speed flow regions. A small circular shock tube is employed along with the schlieren photography technique to visualize the flow. The voltage and current traces of the plasma actuator are monitored throughout, and using the well-established shock tube theory the change in the actuator characteristics are related to the physical processes which occur inside the shock tube. The results show that not only is the shear layer outside of the shock tube affected by the plasma but the passage of the shock front and high-speed flow behind it also greatly influences the properties of the plasma

    Suspended liquid particle disturbance on laser-induced blast wave and low density distribution

    Get PDF
    The impurity effect of suspended liquid particles on the laser-induced gas breakdown was experimentally investigated in quiescent gas. The focus of this study is the investigation of the influence of the impurities on the shock wave structure as well as the low density distribution. A 532 nm Nd:YAG laser beam with an 188 mJ/pulse was focused on the chamber filled with suspended liquid particles 0.9 ± 0.63 μm in diameter. Several shock waves are generated by multiple gas breakdowns along the beam path in the breakdown with particles. Four types of shock wave structures can be observed: (1) the dual blast waves with a similar shock radius, (2) the dual blast waves with a large shock radius at the lower breakdown, (3) the dual blast waves with a large shock radius at the upper breakdown, and (4) the triple blast waves. The independent blast waves interact with each other and enhance the shock strength behind the shock front in the lateral direction. The triple blast waves lead to the strongest shock wave in all cases. The shock wave front that propagates toward the opposite laser focal spot impinges on one another, and thereafter a transmitted shock wave (TSW) appears. The TSW interacts with the low density core called a kernel; the kernel then longitudinally expands quickly due to a Richtmyer-Meshkov-like instability. The laser-particle interaction causes an increase in the kernel volume which is approximately five times as large as that in the gas breakdown without particles. In addition, the laser-particle interaction can improve the laser energy efficiency

    Compressible flow structures interaction with a two-dimensional ejector: a cold-flow study

    Get PDF
    An experimental study has been conducted to examine the interaction of compressible flow structures such as shocks and vortices with a two-dimensional ejector geometry using a shock-tube facility. Three diaphragm pressure ratios ofP4 =P1 = 4, 8, and 12 have been employed, whereP4 is the driver gas pressure andP1 is the pressure within the driven compartment of the shock tube. These lead to incident shock Mach numbers of Ms = 1:34, 1.54, and 1.66, respectively. The length of the driver section of the shock tube was 700 mm. Air was used for both the driver and driven gases. High-speed shadowgraphy was employed to visualize the induced flowfield. Pressure measurements were taken at different locations along the test section to study theflow quantitatively. The induced flow is unsteady and dependent on the degree of compressibility of the initial shock wave generated by the rupture of the diaphragm

    Quantification challenges for atom probe tomography of hydrogen and deuterium in zircaloy-4

    Get PDF
    Analysis and understanding of the role of hydrogen in metals is a significant challenge for the future of materials science, and this is a clear objective of recent work in the atom probe tomography (APT) community. Isotopic marking by deuteration has often been proposed as the preferred route to enable quantification of hydrogen by APT. Zircaloy-4 was charged electrochemically with hydrogen and deuterium under the same conditions to form large hydrides and deuterides. Our results from a Zr hydride and a Zr deuteride highlight the challenges associated with accurate quantification of hydrogen and deuterium, in particular associated with the overlap of peaks at a low mass-to-charge ratio and of hydrogen/deuterium containing molecular ions. We discuss possible ways to ensure that appropriate information is extracted from APT analysis of hydrogen in zirconium alloy systems that are important for nuclear power applications

    Regional contributions of six preventable risk factors to achieving the 25 × 25 non-communicable disease mortality reduction target: a modelling study

    Get PDF
    Background Countries have agreed to reduce premature mortality from the four main non-communicable diseases (NCDs) by 25% from 2010 levels by 2025 (referred to as the 25 × 25 target). Countries also agreed on a set of global voluntary targets for selected NCD risk factors. Previous analyses have shown that achieving the risk factor targets can contribute substantially towards meeting the 25 × 25 mortality target at the global level. We estimated the contribution of achieving six of the globally agreed risk factor targets towards meeting the 25 × 25 mortality target by region. Methods We estimated the eff ect of achieving the targets for six risk factors (tobacco and alcohol use, salt intake, obesity, and raised blood pressure and glucose) on NCD mortality between 2010 and 2025. Our methods accounted for multicausality of NCDs and for the fact that, when risk factor exposure increases or decreases, the harmful or benefi cial eff ects on NCDs accumulate gradually. We used data for risk factor and mortality trends from systematic analyses of available country data. Relative risks for the eff ects of individual and multiple risks, and for change in risk after decreases or increases in exposure, were from reanalyses and meta-analyses of epidemiological studies. Findings The probability of dying between the ages 30 years and 70 years from the four main NCDs in 2010 ranged from 19% in the region of the Americas to 29% in southeast Asia for men, and from 13% in Europe to 21% in southeast Asia for women. If current trends continue, the probability of dying prematurely from the four main NCDs is projected to increase in the African region but decrease in the other fi ve regions. If the risk factor targets are achieved, the 25 × 25 target will be surpassed in Europe in both men and women, and will be achieved in women (and almost achieved in men) in the western Pacifi c; the regions of the Americas, the eastern Mediterranean, and southeast Asia will approach the target; and the rising trend in Africa will be reversed. In most regions, a more ambitious approach to tobacco control (50% reduction relative to 2010 instead of the agreed 30%) will contribute the most to reducing premature NCD mortality among men, followed by addressing raised blood pressure and the agreed tobacco target. For women, the highest contributing risk factor towards the premature NCD mortality target will be raised blood pressure in every region except Europe and the Americas, where the ambitious (but not agreed) tobacco reduction would have the largest benefi t. Interpretation No WHO region will meet the 25 × 25 premature mortality target if current mortality trends continue. Achieving the agreed targets for the six risk factors will allow some regions to meet the 25 × 25 target and others to approach it. Meeting the 25 × 25 target in Africa needs other interventions, including those addressing infectionrelated cancers and cardiovascular disease
    corecore