896 research outputs found

    Search for surface magnetic fields in Mira stars. First detection in chi Cyg

    Full text link
    In order to complete the knowledge of the magnetic field and of its influence during the transition from Asymptotic Giant Branch to Planetary Nebulae stages, we have undertaken a search for magnetic fields at the surface of Mira stars. We used spectropolarimetric observations, collected with the Narval instrument at TBL, in order to detect - with Least Squares Deconvolution method - a Zeeman signature in the visible part of the spectrum. We present the first spectropolarimetric observations of the S-type Mira star chi Cyg, performed around its maximum light. We have detected a polarimetric signal in the Stokes V spectra and we have established its Zeeman origin. We claim that it is likely to be related to a weak magnetic field present at the photospheric level and in the lower part of the stellar atmosphere. We have estimated the strength of its longitudinal component to about 2-3 Gauss. This result favors a 1/r law for the variation of the magnetic field strength across the circumstellar envelope of chi Cyg. This is the first detection of a weak magnetic field at the stellar surface of a Mira star and we discuss its origin in the framework of shock waves periodically propagating throughout the atmosphere of these radially pulsating stars. At the date of our observations of chi Cyg, the shock wave reaches its maximum intensity, and it is likely that the shock amplifies a weak stellar magnetic field during its passage through the atmosphere. Without such an amplification by the shock, the magnetic field strength would have been too low to be detected. For the first time, we also report strong Stokes Q and U signatures (linear polarization) centered onto the zero velocity (i.e., at the shock front position). They seem to indicate that the radial direction would be favored by the shock during its propagation throughout the atmosphere.Comment: 9 pages, 4 figures accepted by Astronomy and Astrophysics (21 November 2013

    Lithium and magnetic fields in giants. HD 232862 : a magnetic and lithium-rich giant star

    Get PDF
    We report the detection of an unusually high lithium content in HD 232862, a field giant classified as a G8II star, and hosting a magnetic field. With the spectropolarimeters ESPaDOnS at CFHT and NARVAL at TBL, we have collected high resolution and high signal-to-noise spectra of three giants : HD 232862, KU Peg and HD 21018. From spectral synthesis we have inferred stellar parameters and measured lithium abundances that we have compared to predictions from evolutionary models. We have also analysed Stokes V signatures, looking for a magnetic field on these giants. HD 232862, presents a very high abundance of lithium (ALi = 2.45 +/- 0.25 dex), far in excess of the theoretically value expected at this spectral type and for this luminosity class (i.e, G8II). The evolutionary stage of HD 232862 has been precised, and it suggests a mass in the lower part of the [1.0 Msun ; 3.5 Msun ] mass interval, likely 1.5 to 2.0 solar mass, at the bottom of the Red Giant Branch. Besides, a time variable Stokes V signature has been detected in the data of HD 232862 and KU Peg, pointing to the presence of a magnetic field at the surface of these two rapidly rotating active stars.Comment: 11 pages, 9 figures ; accepted by Astronomy and Astrophysic

    Experiment K-6-23. Effect of spaceflight on levels and function of immune cells

    Get PDF
    Two different immunology experiments were performed on samples received from rats flown on Cosmos 1887. In the first experiment, rat bone marrow cells were examined in Moscow for their response to colony stimulating factor-M. In the second experiment, rat spleen and bone marrow cells were stained in Moscow with a variety of antibodies directed against cell surface antigenic markers. These cells were preserved and shipped to the United States where they were subjected to analysis on a flow cytometer. The results of the studies indicate that bone marrow cells from flown rats showed a decreased response to colony stimulating factor than did bone marrow cells from control rats. There was a higher percentage of spleen cells from flown rats staining positively for pan-T-cell, suppressor-T-cell and innate interleukin-2 receptor antigens than from control animals. In addition, a higher percentage of cells that appeared to be part of the myelogenous population of bone marrow cells from flown rats stained positively for surface immunoglobulin than did equivalent cells from control rats

    The Magnetic Fields at the Surface of Active Single G-K Giants

    Full text link
    We investigate the magnetic field at the surface of 48 red giants selected as promising for detection of Stokes V Zeeman signatures in their spectral lines. We use the spectropolarimeters Narval and ESPaDOnS to detect circular polarization within the photospheric absorption lines of our targets and use the least-squares deconvolution (LSD) method. We also measure the classical S-index activity indicator, and the stellar radial velocity. To infer the evolutionary status of our giants and to interpret our results, we use state-of-the-art stellar evolutionary models with predictions of convective turnover times. We unambiguously detect magnetic fields via Zeeman signatures in 29 of the 48 red giants in our sample. Zeeman signatures are found in all but one of the 24 red giants exhibiting signs of activity, as well as 6 out of 17 bright giant stars.The majority of the magnetically detected giants are either in the first dredge up phase or at the beginning of core He burning, i.e. phases when the convective turnover time is at a maximum: this corresponds to a 'magnetic strip' for red giants in the Hertzsprung-Russell diagram. A close study of the 16 giants with known rotational periods shows that the measured magnetic field strength is tightly correlated with the rotational properties, namely to the rotational period and to the Rossby number Ro. Our results show that the magnetic fields of these giants are produced by a dynamo. Four stars for which the magnetic field is measured to be outstandingly strong with respect to that expected from the rotational period/magnetic field relation or their evolutionary status are interpreted as being probable descendants of magnetic Ap stars. In addition to the weak-field giant Pollux, 4 bright giants (Aldebaran, Alphard, Arcturus, eta Psc) are detected with magnetic field strength at the sub-gauss level.Comment: 34 pages, 22 Figures, accepted for publication in Astronomy & Astrophysic

    EK Eridani: the tip of the iceberg of giants which have evolved from magnetic Ap stars

    Full text link
    We observe the slowly-rotating, active, single giant, EK Eri, to study and infer the nature of its magnetic field directly. We used the spectropolarimeter NARVAL at the Telescope Bernard Lyot, Pic du Midi Observatory, and the Least Square Deconvolution method to create high signal-to-noise ratio Stokes V profiles. We fitted the Stokes V profiles with a model of the large-scale magnetic field. We studied the classical activity indicators, the CaII H and K lines, the CaII infrared triplet, and H\alpha line. We detected the Stokes V signal of EK Eri securely and measured the longitudinal magnetic field Bl for seven individual dates spanning 60% of the rotational period. The measured longitudinal magnetic field of EK Eri reached about 100 G and was as strong as fields observed in RSCVn or FK Com type stars: this was found to be extraordinary when compared with the weak fields observed at the surfaces of slowly-rotating MS stars or any single red giant previously observed with NARVAL. From our modeling, we infer that the mean surface magnetic field is about 270 G, and that the large scale magnetic field is dominated by a poloidal component. This is compatible with expectations for the descendant of a strongly magnetic Ap star.Comment: 8 pages, 6 figures. Accepted for publication in A&

    Simultaneous monitoring of the photometric and polarimetric activity of the young star PV Cep in the optical/near-infrared bands

    Full text link
    We present the results of a simultaneous monitoring, lasting more than 2 years, of the optical and near-infrared photometric and polarimetric activity of the variable protostar PV Cep. During the monitoring period, an outburst has occurred in all the photometric bands, whose declining phase (Δ\DeltaJ \approx 3 mag) lasted about 120 days. A time lag of \sim 30 days between optical and infrared light curves has been measured and interpreted in the framework of an accretion event. This latter is directly recognizable in the significant variations of the near-infrared colors, that appear bluer in the outburst phase, when the star dominates the emission, and redder in declining phase, when the disk emission prevails. All the observational data have been combined to derive a coherent picture of the complex morphology of the whole PV Cep system, that, in addition to the star and the accretion disk, is composed also by a variable biconical nebula. In particular, the mutual interaction between all these components is the cause of the high value of the polarization (\approx 20%) and of its fluctuations. The observational data concur to indicate that PV Cep is not a genuine EXor star, but rather a more complex object; moreover the case of PV Cep leads to argue about the classification of other recently discovered young sources in outburst, that have been considered, maybe over-simplifying, as EXor.Comment: Accepted for publication on Ap

    Changes in the sound articulation of Bulgarian speech following non-removable prosthetic restoration of frontal maxillary defects

    Get PDF
    Human speech is a complex process that requires coordinated action of various articulatory organs. The formation of sounds in speech, both vowels and consonants, is achieved through the use of the articulatory apparatus. It is important to note that the place and manner of articulation are crucial for producing different sounds in speech. Specifically, over 46% of the frequency of sound occurrence in speech is related to the frontal teeth, including their shape, size, and spatial arrangement. These observations can be used for a more in-depth analysis of phonetic changes that occur after the prosthetic restoration of frontal maxillary defects
    corecore