31 research outputs found

    Internet of Things for Sustainable Forestry

    Get PDF
    Forests and grasslands play an important role in water and air purification, prevention of the soil erosion, and in provision of habitat to wildlife. Internet of Things has a tremendous potential to play a vital role in the forest ecosystem management and stability. The conservation of species and habitats, timber production, prevention of forest soil degradation, forest fire prediction, mitigation, and control can be attained through forest management using Internet of Things. The use and adoption of IoT in forest ecosystem management is challenging due to many factors. Vast geographical areas and limited resources in terms of budget and equipment are some of the limiting factors. In digital forestry, IoT deployment offers effective operations, control, and forecasts for soil erosion, fires, and undesirable depositions. In this chapter, IoT sensing and communication applications are presented for digital forestry systems. Different IoT systems for digital forest monitoring applications are also discussed

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    ANALYSIS OF RELATIONSHIP BETWEEN URBAN HEAT ISLAND EFFECT AND LAND USE/COVER TYPE USING LANDSAT 7 ETM+ AND LANDSAT 8 OLI IMAGES

    No full text
    The main objectives of this study are (i) to calculate Land Surface Temperature (LST) from Landsat imageries, (ii) to determine the UHI effects from Landsat 7 ETM+ (June 5, 2001) and Landsat 8 OLI (June 17, 2014) imageries, (iii) to examine the relationship between LST and different Land Use/Land Cover (LU/LC) types for the years 2001 and 2014. The study is implemented in the central districts of Antalya. Initially, the brightness temperatures are retrieved and the LST values are calculated from Landsat thermal images. Then, the LU/LC maps are created from Landsat pan-sharpened images using Random Forest (RF) classifier. Normalized Difference Vegetation Index (NDVI) image, ASTER Global Digital Elevation Model (GDEM) and DMSP_OLS nighttime lights data are used as auxiliary data during the classification procedure. Finally, UHI effect is determined and the LST values are compared with LU/LC classes. The overall accuracies of RF classification results were computed higher than 88 % for both Landsat images. During 13-year time interval, it was observed that the urban and industrial areas were increased significantly. Maximum LST values were detected for dry agriculture, urban, and bareland classes, while minimum LST values were detected for vegetation and irrigated agriculture classes. The UHI effect was computed as 5.6 °C for 2001 and 6.8 °C for 2014. The validity of the study results were assessed using MODIS/Terra LST and Emissivity data and it was found that there are high correlation between Landsat LST and MODIS LST data (r2 = 0.7 and r2 = 0.9 for 2001 and 2014, respectively)

    PLASTIC AND GLASS GREENHOUSES DETECTION AND DELINEATION FROM WORLDVIEW-2 SATELLITE IMAGERY

    No full text
    Greenhouse detection using remote sensing technologies is an important research area for yield estimation, sustainable development, urban and rural planning and management. An approach was developed in this study for the detection and delineation of greenhouse areas from high resolution satellite imagery. Initially, the candidate greenhouse patches were detected using supervised classification techniques. For this purpose, Maximum Likelihood (ML), Random Forest (RF), and Support Vector Machines (SVM) classification techniques were applied and compared. Then, sieve filter and morphological operations were performed for improving the classification results. Finally, the obtained candidate plastic and glass greenhouse areas were delineated using boundary tracing and Douglas Peucker line simplification algorithms. The proposed approach was implemented in the Kumluca district of Antalya, Turkey utilizing pan-sharpened WorldView-2 satellite imageries. Kumluca is the prominent district of Antalya with greenhouse cultivation and includes both plastic and glass greenhouses intensively. When the greenhouse classification results were analysed, it can be stated that the SVM classification provides most accurate results and RF classification follows this. The SVM classification overall accuracy was obtained as 90.28%. When the greenhouse boundary delineation results were considered, the plastic greenhouses were delineated with 92.11% accuracy, while glass greenhouses were delineated with 80.67% accuracy. The obtained results indicate that, generally plastic and glass greenhouses can be detected and delineated successfully from WorldView-2 satellite imagery

    Automatic building extraction from high resolution satellite images for map updating: A model based approach

    No full text
    An approach was developed for automatically updating the buildings of an existing vector database from high resolution satellite images using spectral image classification, Digital Elevation Models (DEM) and the model-based extraction techniques. First, the areas that contain buildings are detected using spectral image classification and the normalized Digital Surface Model (nDSM). The classified output provides the shapes and the approximate locations of the buildings. However, those buildings that have similar reflectance values with the other classes were not able to be detected. Therefore, nDSM was generated by subtracting the Digital Terrain Model (DTM) from the Digital Surface Model (DSM). Next, the buildings were differentiated from the trees by using the Normalized Difference Vegetation Index (NDVI). Areas other than the buildings are excluded from further processing. The buildings that exist in the vector database but missing in the image were detected through analyzing the results of the classification and nDSM. Finally, the buildings constructed after the date of the compilation of the existing vector database were extracted through the proposed model-based approach and the vector database was updated with the new building boundaries. The method was implemented in a selected urban area in Ankara, Turkey using the IKONOS pan-sharpened and panchromatic images. The results show that the proposed approach is quite satisfactory for detecting and delineating the buildings from high resolution space images

    Building Extraction from High Resolution Satellite Images Using Hough Transform

    No full text
    An approach was developed for the automatic extraction of the rectangular and circular shaped buildings from high resolution satellite imagery using Hough transform. First, the candidate building patches are detected from the imagery using the binary Support Vector Machines (SVM) classification technique. In addition to original image bands, the bands NDVI (Normalized Difference Vegetation Index), and nDSM (normalized Digital Surface Model) are also used in the classification. After detecting the building patches, their edges are detected using the Canny edge detection algorithm. The edge image is then converted into vector form using the Hough transform, which is a widely used technique for extracting the lines or curves of the objects. The vector lines and curves that represent the building edges are grouped based on perceptual groupings, and the building boundaries are constructed. The proposed approach was implemented using a program written in MATLAB (R) v. 7.1 programming environment. The experimental tests were carried out in the residential and industrial urban blocks selected in the Batikent district of Ankara, the capital city of Turkey using the pan-sharpened and panchromatic IKONOS images. The results obtained indicate that the proposed building extraction procedure based on SVM and Hough transform can be effectively used to extract the boundaries of the rectangular and circular shaped buildings. For the industrial buildings, we obtained quite satisfactory results with the average Building Detection Percentage (BDP) and the Quality Percentage (QP) values of 93.45% and 79.51%, respectively. For the residential rectangular buildings, the average BDP and QP values were computed to be 95.34% and 79.05%, respectively. For the residential circular buildings, the average BDP and QP values were found to be 78.74% and 66.81%, respectively.Wo

    Building Detection From Pan-Sharpened Ikonos Imagery Through Support Vector Machines Classification

    No full text
    An approach is presented for detecting the buildings from high resolution pan-sharpened IKONOS imagery through binary Support Vector Machines (SVM) classification. In addition to original spectral bands, the bands nDSM (normalized Digital Surface Model), NDVI (Normalized Difference Vegetation Index), PC1, PC2, PC3, and PC4 (First, Second, Third, and Fourth Principal Components), are also included in the classification. The proposed classification procedure was carried out in three study areas selected in the Batikent district of Ankara, Turkey. The study areas show different residential and industrial characteristics. The first study area covers mainly the residential parts that include buildings with different shapes, sizes, dwelling types, and colored roofs. The second study area also represents the residential characteristics but contains buildings with more regular shapes. The third study area contains the industrial buildings with the gray tone roofs and the sizes of the buildings are larger. Also tested in the present study is the effect of the training sample size in the accuracy of the SVM classification. The results reveal that the overall accuracies were computed to be between 90% and 99%, while the kappa coefficients were found to be between 0.80 and 0.98. The inclusion of additional bands in the SVM classification had a considerable effect in the accuracy of building detection. Increasing the training size increased the accuracy, however, the increase was not more than 3%.Wo

    OBJECT-BASED GREENHOUSE CLASSIFICATION FROM HIGH RESOLUTION SATELLITE IMAGERY: A CASE STUDY ANTALYA-TURKEY

    No full text
    Pixel-based classification method is widely used with the purpose of detecting land use and land cover with remote sensing technology. Recently, object-based classification methods have begun to be used as well as pixel-based classification method on high resolution satellite imagery. In the studies conducted, it is indicated that object-based classification method has more successful results than other classification methods. While pixel-based classification method is performed according to the grey value of pixels, object-based classification process is executed by generating imagery segmentation and updatable rule sets. In this study, it was aimed to detect and map the greenhouses from object-based classification method by using high resolution satellite imagery. The study was carried out in the Antalya province which includes greenhouse intensively. The study consists of three main stages including segmentation, classification and accuracy assessment. At the first stage, which was segmentation, the most important part of the object-based imagery analysis; imagery segmentation was generated by using basic spectral bands of high resolution Worldview-2 satellite imagery. At the second stage, applying the nearest neighbour classifier to these generated segments classification process was executed, and a result map of the study area was generated. Finally, accuracy assessments were performed using land studies and digital data of the area. According to the research results, object-based greenhouse classification using high resolution satellite imagery had over 80% accuracy

    Post-processing of Pixel and Object-Based Land Cover Classifications of Very High Spatial Resolution Images

    No full text
    The state of the art is plenty of classification methods. Pixel-based methods include the most traditional ones. Although these achieved high accuracy when classifying remote sensing images, some limits emerged with the advent of very high-resolution images that enhanced the spectral heterogeneity within a class. Therefore, in the last decade, new classification methods capable of overcoming these limits have undergone considerable development. Within this research, we compared the performances of an Object-based and a Pixel-Based classification method, the Random Forests (RF) and the Object-Based Image Analysis (OBIA), respectively. Their ability to quantify the extension and the perimeter of the elements of each class was evaluated through some performance indices. Algorithm parameters were calibrated on a subset, then, applied on the whole image. Since these algorithms perform accurately in quantifying the elements areas, but worse if we consider the perimeters length, hence, the aim of this research was to setup some post-processing techniques to improve, in particular, this latter performance. Algorithms were applied on peculiar classes of an area comprising the Isole dello Stagnone di Marsala oriented natural reserve, in north-western corner of Si-cily, salt pans and agricultural settlements. The area was covered by a World View-2 multispectral image consisting of eight spectral bands spanning from visible to near-infrared wavelengths and characterized by a spatial resolution of two meters. Both classification algorithms did not quantify accurately object perimeters; especially RF. Post-processing algorithm improved the estimates, which however remained more accurate for OBIA than for RF
    corecore