1,267 research outputs found
Tomanthera auriculata (Michx.) Raf. Extant in Ohio
Author Institution: The Nature ConservancyTomanthera auriculata, an annual member of the Scrophulariaceae, is known historically from four Ohio counties. In 1985, the taxon, thought to have been extirpated from Ohio, was rediscovered in Adams County. Habitat disturbances appear to play an important role in the perpetuation of this species
Parallel ion strings in linear multipole traps
Additional radio-frequency (rf) potentials applied to linear multipole traps
create extra field nodes in the radial plane which allow one to confine single
ions, or strings of ions, in totally rf field-free regions. The number of nodes
depends on the order of the applied multipole potentials and their relative
distance can be easily tuned by the amplitude variation of the applied
voltages. Simulations using molecular dynamics show that strings of ions can be
laser cooled down to the Doppler limit in all directions of space. Once cooled,
organized systems can be moved with very limited heating, even if the cooling
process is turned off
Isolated lymphoid follicles are dynamic reservoirs for the induction of intestinal IgA
IgA is one of the most important molecules in the regulation of intestinal homeostasis. Peyer’s patches have been traditionally recognized as sites for the induction of intestinal IgA responses, however more recent studies demonstrate that isolated lymphoid follicles (ILFs) can perform this function as well. ILF development is dynamic, changing in response to the luminal microbial burden, suggesting that ILFs play an important role providing an expandable reservoir of compensatory IgA inductive sites. However, in situations of immune dysfunction, ILFs can over-develop in response to uncontrollable enteric flora, resulting in ILF hyperplasia. The ability of ILFs to expand and respond to help control the enteric flora makes this dynamic reservoir an important arm of IgA inductive sites in intestinal immunity
100 Years of Changes in Ohio Peatlands
Author Institution: Division of Natural Sciences, Cuyahoga Community College and Department of Biological Sciences, Kent State University; and Ohio Chapter, The Nature ConservancyIdentified from field, herbarium, and literature surveys, 125 Ohio peatlands, that once covered 32,198 ha in 1900, were re-located and surveyed. In 1991, 2% of these peatlands continued to support typical peatland flora. Of the 98% that have been destroyed, conversion of peatlands to agricultural production (27,478 ha) was the major factor in causing peatland loss
Magnetically Controlled Exchange Process in an Ultracold Atom-Dimer Mixture
We report on the observation of an elementary exchange process in an
optically trapped ultracold sample of atoms and Feshbach molecules. We can
magnetically control the energetic nature of the process and tune it from
endoergic to exoergic, enabling the observation of a pronounced threshold
behavior. In contrast to relaxation to more deeply bound molecular states, the
exchange process does not lead to trap loss. We find excellent agreement
between our experimental observations and calculations based on the solutions
of three-body Schr\"odinger equation in the adiabatic hyperspherical
representation. The high efficiency of the exchange process is explained by the
halo character of both the initial and final molecular states.Comment: 4 pages, 4 figure
Ultracold mixtures of metastable He and Rb: scattering lengths from ab initio calculations and thermalization measurements
We have investigated the ultracold interspecies scattering properties of
metastable triplet He and Rb. We performed state-of-the-art ab initio
calculations of the relevant interaction potential, and measured the
interspecies elastic cross section for an ultracold mixture of metastable
triplet He and Rb in a quadrupole magnetic trap at a temperature of
0.5 mK. Our combined theoretical and experimental study gives an interspecies
scattering length , which prior to this work was
unknown. More general, our work shows the possibility of obtaining accurate
scattering lengths using ab initio calculations for a system containing a
heavy, many-electron atom, such as Rb.Comment: 11 pages, 11 figures, accepted for publication in Phys. Rev.
Dark resonances as a probe for the motional state of a single ion
Single, rf-trapped ions find various applications ranging from metrology to
quantum computation. High-resolution interrogation of an extremely weak
transition under best observation conditions requires an ion almost at rest. To
avoid line-broadening effects such as the second order Doppler effect or rf
heating in the absence of laser cooling, excess micromotion has to be
eliminated as far as possible. In this work the motional state of a confined
three-level ion is probed, taking advantage of the high sensitivity of observed
dark resonances to the trapped ion's velocity. Excess micromotion is controlled
by monitoring the dark resonance contrast with varying laser beam geometry. The
influence of different parameters such as the cooling laser intensity has been
investigated experimentally and numerically
Terahertz frequency standard based on three-photon coherent population trapping
A scheme for a THz frequency standard based on three-photon coherent
population trapping in stored ions is proposed. Assuming the propagation
directions of the three lasers obey the phase matching condition, we show that
stability of few 10 at one second can be reached with a precision
limited by power broadening to in the less favorable case. The
referenced THz signal can be propagated over long distances, the useful
information being carried by the relative frequency of the three optical
photons.Comment: article soumis a PRL le 21 mars 2007, accepte le 10 mai, version 2
(24/05/2007
Antibiotics promote the sampling of luminal antigens and bacteria via colonic goblet cell associated antigen passages
- …
