1,313 research outputs found
Computing the merger of black-hole binaries: the IBBH problem
Gravitational radiation arising from the inspiral and merger of binary black
holes (BBH's) is a promising candidate for detection by kilometer-scale
interferometric gravitational wave observatories. This paper discusses a
serious obstacle to searches for such radiation and to the interpretation of
any observed waves: the inability of current computational techniques to evolve
a BBH through its last ~10 orbits of inspiral (~100 radians of
gravitational-wave phase). A new set of numerical-relativity techniques is
proposed for solving this ``Intermediate Binary Black Hole'' (IBBH) problem:
(i) numerical evolutions performed in coordinates co-rotating with the BBH, in
which the metric coefficients evolve on the long timescale of inspiral, and
(ii) techniques for mathematically freezing out gravitational degrees of
freedom that are not excited by the waves.Comment: 6 pages RevTe
An overview of the research evidence on ethnicity and communication in healthcare
• The aim of the present study was to identify and review the available
research evidence on 'ethnicity and communication' in areas relevant to
ensuring effective provision of mainstream services (e.g. via interpreter,
advocacy and translation services); provision of services targeted on
communication (e.g. speech and language therapy, counselling,
psychotherapy); consensual/ participatory activities (e.g. consent to
interventions), and; procedures for managing and planning for linguistic
diversity
Saturable discrete vector solitons in one-dimensional photonic lattices
Localized vectorial modes, with equal frequencies and mutually orthogonal
polarizations, are investigated both analytically and experimentally in a
one-dimensional photonic lattice with saturable nonlinearity. It is shown that
these modes may span over many lattice elements and that energy transfer among
the two components is both phase and intensity dependent. The transverse
electrically polarized mode exhibits a single-hump structure and spreads in
cascades in saturation, while the transverse magnetically polarized mode
exhibits splitting into a two-hump structure. Experimentally such discrete
vector solitons are observed in lithium niobate lattices for both coherent and
mutually incoherent excitations.Comment: 4 pages, 5 figures (reduced for arXiv
A Deep \u3cem\u3eChandra\u3c/em\u3e ACIS Survey of M83
We have obtained a series of deep X-ray images of the nearby galaxy M83 using Chandra, with a total exposure of 729 ks. Combining the new data with earlier archival observations totaling 61 ks, we find 378 point sources within the D25 contour of the galaxy. We find 80 more sources, mostly background active galactic nuclei (AGNs), outside of the D25 contour. Of the X-ray sources, 47 have been detected in a new radio survey of M83 obtained using the Australia Telescope Compact Array. Of the X-ray sources, at least 87 seem likely to be supernova remnants (SNRs), based on a combination of their properties in X-rays and at other wavelengths. We attempt to classify the point source population of M83 through a combination of spectral and temporal analysis. As part of this effort, we carry out an initial spectral analysis of the 29 brightest X-ray sources. The soft X-ray sources in the disk, many of which are SNRs, are associated with the spiral arms, while the harder X-ray sources, mostly X-ray binaries (XRBs), do not appear to be. After eliminating AGNs, foreground stars, and identified SNRs from the sample, we construct the cumulative luminosity function (CLF) of XRBs brighter than 8 × 1035 erg s–1. Despite M83\u27s relatively high star formation rate, the CLF indicates that most of the XRBs in the disk are low mass XRBs
On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle
The monitoring of a quantum-mechanical harmonic oscillator on which a classical force acts is important in a variety of high-precision experiments, such as the attempt to detect gravitational radiation. This paper reviews the standard techniques for monitoring the oscillator, and introduces a new technique which, in principle, can determine the details of the force with arbitrary accuracy, despite the quantum properties of the oscillator. The standard method for monitoring the oscillator is the "amplitude-and-phase" method (position or momentum transducer with output fed through a narrow-band amplifier). The accuracy obtainable by this method is limited by the uncertainty principle ("standard quantum limit"). To do better requires a measurement of the type which Braginsky has called "quantum nondemolition." A well known quantum nondemolition technique is "quantum counting," which can detect an arbitrarily weak classical force, but which cannot provide good accuracy in determining its precise time dependence. This paper considers extensively a new type of quantum nondemolition measurement—a "back-action-evading" measurement of the real part X_1 (or the imaginary part X_2) of the oscillator's complex amplitude. In principle X_1 can be measured "arbitrarily quickly and arbitrarily accurately," and a sequence of such measurements can lead to an arbitrarily accurate monitoring of the classical force. The authors describe explicit Gedanken experiments which demonstrate that X_1 can be measured arbitrarily quickly and arbitrarily accurately. In these experiments the measuring apparatus must be coupled to both the position (position transducer) and the momentum (momentum transducer) of the oscillator, and both couplings must be modulated sinusoidally. For a given measurement time the strength of the coupling determines the accuracy of the measurement; for arbitrarily strong coupling the measurement can be arbitrarily accurate. The "momentum transducer" is constructed by combining a "velocity transducer" with a "negative capacitor" or "negative spring." The modulated couplings are provided by an external, classical generator, which can be realized as a harmonic oscillator excited in an arbitrarily energetic, coherent state. One can avoid the use of two transducers by making "stroboscopic measurements" of X_1, in which one measures position (or momentum) at half-cycle intervals. Alternatively, one can make "continuous single-transducer" measurements of X_1 by modulating appropriately the output of a single transducer (position or momentum), and then filtering the output to pick out the information about X_1 and reject information about X_2. Continuous single-transducer measurements are useful in the case of weak coupling. In this case long measurement times are required to achieve good accuracy, and continuous single-transducer measurements are almost as good as perfectly coupled two-transducer measurements. Finally, the authors develop a theory of quantum nondemolition measurement for arbitrary systems. This paper (Paper I) concentrates on issues of principle; a sequel (Paper II) will consider issues of practice
A Deep \u3cem\u3eChandra\u3c/em\u3e ACIS Survey of M83
We have obtained a series of deep X-ray images of the nearby galaxy M83 using Chandra, with a total exposure of 729 ks. Combining the new data with earlier archival observations totaling 61 ks, we find 378 point sources within the D25 contour of the galaxy. We find 80 more sources, mostly background active galactic nuclei (AGNs), outside of the D25 contour. Of the X-ray sources, 47 have been detected in a new radio survey of M83 obtained using the Australia Telescope Compact Array. Of the X-ray sources, at least 87 seem likely to be supernova remnants (SNRs), based on a combination of their properties in X-rays and at other wavelengths. We attempt to classify the point source population of M83 through a combination of spectral and temporal analysis. As part of this effort, we carry out an initial spectral analysis of the 29 brightest X-ray sources. The soft X-ray sources in the disk, many of which are SNRs, are associated with the spiral arms, while the harder X-ray sources, mostly X-ray binaries (XRBs), do not appear to be. After eliminating AGNs, foreground stars, and identified SNRs from the sample, we construct the cumulative luminosity function (CLF) of XRBs brighter than 8 × 1035 erg s–1. Despite M83\u27s relatively high star formation rate, the CLF indicates that most of the XRBs in the disk are low mass XRBs
Thermoelastic Noise and Homogeneous Thermal Noise in Finite Sized Gravitational-Wave Test Masses
An analysis is given of thermoelastic noise (thermal noise due to
thermoelastic dissipation) in finite sized test masses of laser interferometer
gravitational-wave detectors. Finite-size effects increase the thermoelastic
noise by a modest amount; for example, for the sapphire test masses tentatively
planned for LIGO-II and plausible beam-spot radii, the increase is less than or
of order 10 per cent. As a side issue, errors are pointed out in the currently
used formulas for conventional, homogeneous thermal noise (noise associated
with dissipation which is homogeneous and described by an imaginary part of the
Young's modulus) in finite sized test masses. Correction of these errors
increases the homogeneous thermal noise by less than or of order 5 per cent for
LIGO-II-type configurations.Comment: 10 pages and 3 figures; RevTeX; submitted to Physical Review
Frame-Dragging Vortexes and Tidal Tendexes Attached to Colliding Black Holes: Visualizing the Curvature of Spacetime
When one splits spacetime into space plus time, the spacetime curvature (Weyl
tensor) gets split into an "electric" part E_{jk} that describes tidal gravity
and a "magnetic" part B_{jk} that describes differential dragging of inertial
frames. We introduce tools for visualizing B_{jk} (frame-drag vortex lines,
their vorticity, and vortexes) and E_{jk} (tidal tendex lines, their tendicity,
and tendexes), and also visualizations of a black-hole horizon's (scalar)
vorticity and tendicity. We use these tools to elucidate the nonlinear dynamics
of curved spacetime in merging black-hole binaries.Comment: 4 pages, 5 figure
Visualizing Spacetime Curvature via Frame-Drag Vortexes and Tidal Tendexes II. Stationary Black Holes
When one splits spacetime into space plus time, the Weyl curvature tensor
(which equals the Riemann tensor in vacuum) splits into two spatial, symmetric,
traceless tensors: the tidal field , which produces tidal forces, and the
frame-drag field , which produces differential frame dragging. In recent
papers, we and colleagues have introduced ways to visualize these two fields:
tidal tendex lines (integral curves of the three eigenvector fields of ) and
their tendicities (eigenvalues of these eigenvector fields); and the
corresponding entities for the frame-drag field: frame-drag vortex lines and
their vorticities. These entities fully characterize the vacuum Riemann tensor.
In this paper, we compute and depict the tendex and vortex lines, and their
tendicities and vorticities, outside the horizons of stationary (Schwarzschild
and Kerr) black holes; and we introduce and depict the black holes' horizon
tendicity and vorticity (the normal-normal components of and on the
horizon). For Schwarzschild and Kerr black holes, the horizon tendicity is
proportional to the horizon's intrinsic scalar curvature, and the horizon
vorticity is proportional to an extrinsic scalar curvature. We show that, for
horizon-penetrating time slices, all these entities (, , the tendex lines
and vortex lines, the lines' tendicities and vorticities, and the horizon
tendicities and vorticities) are affected only weakly by changes of slicing and
changes of spatial coordinates, within those slicing and coordinate choices
that are commonly used for black holes. [Abstract is abbreviated.]Comment: 19 pages, 7 figures, v2: Changed to reflect published version
(changes made to color scales in Figs 5, 6, and 7 for consistent
conventions). v3: Fixed Ref
- …
