346 research outputs found

    Targeting Autophagy Addiction in Cancer

    Get PDF
    Autophagy inhibition is a novel cancer therapeutic strategy in the early stages of clinical trial testing. The initial rationale for using autophagy inhibition was generated by research revealing that autophagy is upregulated in response to external stresses, including chemotherapy and radiotherapy. Combining autophagy inhibition with agents that induce autophagy as a pro-survival response may therefore increase their therapeutic efficacy. Recent research has shown that some cancer cells, particularly those driven by the K-Ras oncogene, also depend on elevated levels of autophagy for survival even in the absence of external stressors. In multiple in vitro as well as in vivo systems, oncogenic Ras-mediated transformation and tumor growth are dependent on autophagy to evade metabolic stress and cell death. These studies have subsequently led to further early phase clinical testing whether autophagy inhibition is a viable and effective strategy for targeting Ras-driven tumors. Even before the clinical results are available from these ongoing clinical trials, much work remains to optimally develop the approach of autophagy inhibition clinically; most notably reliably detecting levels of autophagy in human tumor samples, pharmacodynamics of currently available autophagy inhibitors (chloroquine and the derivative hydroxychloroquine), and new target identification and drug development

    KRAS: feeding pancreatic cancer proliferation

    Get PDF
    Oncogenic KRAS mutation is the signature genetic event in the progression and growth of pancreatic ductal adenocarcinoma (PDAC), an almost universally fatal disease. Although it has been appreciated for some time that nearly 95% of PDAC harbor mutationally activated KRAS, to date no effective treatments that target this mutant protein have reached the clinic. A number of studies have shown that oncogenic KRAS plays a central role in controlling tumor metabolism by orchestrating multiple metabolic changes including stimulation of glucose uptake, differential channeling of glucose intermediates, reprogrammed glutamine metabolism, increased autophagy, and macropinocytosis. Here we review these recent findings and address how they may be applied to develop new PDAC treatments

    Drugging the undruggable RAS: Mission Possible?

    Get PDF
    Despite more than three decades of intensive effort, no effective pharmacologic inhibitors of the Ras oncoproteins have reached the clinic, prompting the widely held perception that Ras proteins are “undruggable”. However, there is renewed hope that this is not the case. In this review, we summarize the progress and promise of five key directions. First, we focus on the prospects of direct inhibitors of Ras. Second, we revisit the issue of whether blocking Ras membrane association is a viable approach. Third, we assess the status of targeting Ras downstream effector signalling, arguably the most favourable current direction. Fourth, we address whether the search for synthetic lethal interactors of mutant RAS still holds promise. Finally, Ras-mediated changes in cell metabolism have recently been described. Can these changes be exploited for new therapeutic directions? We conclude with perspectives on how additional complexities, not yet fully understood, may impact each of these approaches

    Ethics of controlled human infection to study COVID-19

    Get PDF
    Development of an effective vaccine is the clearest path to controlling the coronavirus disease 2019 (COVID-19) pandemic. To accelerate vaccine development, some researchers are pursuing, and thousands of people have expressed interest in participating in, controlled human infection studies (CHIs) with severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) (1, 2). In CHIs, a small number of participants are deliberately exposed to a pathogen to study infection and gather preliminary efficacy data on experimental vaccines or treatments. We have been developing a comprehensive, state-of-the-art ethical framework for CHIs that emphasizes their social value as fundamental to justifying these studies. The ethics of CHIs in general are underexplored (3, 4), and ethical examinations of SARS-CoV-2 CHIs have largely focused on whether the risks are acceptable and participants could give valid informed consent (1). The high social value of such CHIs has generally been assumed. Based on our framework, we agree on the ethical conditions for conducting SARS-CoV-2 CHIs (see the table). We differ on whether the social value of such CHIs is sufficient to justify the risks at present, given uncertainty about both in a rapidly evolving situation; yet we see none of our disagreements as insurmountable. We provide ethical guidance for research sponsors, communities, participants, and the essential independent reviewers considering SARS-CoV-2 CHIs

    Assessing the Completeness of Reporting in Preclinical Oncolytic Virus Therapy Studies

    Get PDF
    Irreproducibility of preclinical findings could be a significant barrier to the “bench-to-bedside” development of oncolytic viruses (OVs). A contributing factor is the incomplete and non-transparent reporting of study methodology and design. Using the NIH Principles and Guidelines for Reporting Preclinical Research, a core set of seven recommendations, we evaluated the completeness of reporting of preclinical OV studies. We also developed an evidence map identifying the current trends in OV research. A systematic search of MEDLINE and Embase identified all relevant articles published over an 18 month period. We screened 1,554 articles, and 236 met our a priori-defined inclusion criteria. Adenovirus (43%) was the most commonly used viral platform. Frequently investigated cancers included colorectal (14%), skin (12%), and breast (11%). Xenograft implantation (61%) in mice (96%) was the most common animal model. The use of preclinical reporting guidelines was listed in 0.4% of articles. Biological and technical replicates were completely reported in 1% of studies, statistics in 49%, randomization in 1%, blinding in 2%, sample size estimation in 0%, and inclusion/exclusion criteria in 0%. Overall, completeness of reporting in the preclinical OV therapy literature is poor. This may hinder efforts to interpret, replicate, and ultimately translate promising preclinical OV findings

    Inhibition of Non-Homologous End Joining Repair Impairs Pancreatic Cancer Growth and Enhances Radiation Response

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is amongst the deadliest of human cancers, due to its late diagnosis as well as its intense resistance to currently available therapeutics. To identify mechanisms as to why PDAC are refractory to DNA damaging cytoxic chemotherapy and radiation, we performed a global interrogation of the DNA damage response of PDAC. We find that PDAC cells generally harbor high levels of spontaneous DNA damage. Inhibition of Non-Homologous End Joining (NHEJ) repair either pharmacologically or by RNAi resulted in a further accumulation of DNA damage, inhibition of growth, and ultimately apoptosis even in the absence of exogenous DNA damaging agents. In response to radiation, PDAC cells rely on the NHEJ pathway to rapidly repair DNA double strand breaks. Mechanistically, when NHEJ is inhibited there is a compensatory increase in Homologous Recombination (HR). Despite this upregulation of HR, DNA damage persists and cells are significantly more sensitive to radiation. Together, these findings support the incorporation of NHEJ inhibition into PDAC therapeutic approaches, either alone, or in combination with DNA damaging therapies such as radiation

    RESCUE OF HIPPO CO-ACTIVATOR YAP1 TRIGGERS DNA DAMAGE-INDUCED APOPTOSIS IN HEMATOLOGICAL CANCERS

    Get PDF
    Oncogene–induced DNA damage elicits genomic instability in epithelial cancer cells, but apoptosis is blocked through inactivation of the tumor suppressor p53. In hematological cancers, the relevance of ongoing DNA damage and mechanisms by which apoptosis is suppressed are largely unknown. We found pervasive DNA damage in hematologic malignancies including multiple myeloma, lymphoma and leukemia, which leads to activation of a p53–independent, pro-apoptotic network centered on nuclear relocalization of ABL1 kinase. Although nuclear ABL1 triggers cell death through its interaction with the Hippo pathway co–activator YAP1 in normal cells, we show that low YAP1 levels prevent nuclear ABL1–induced apoptosis in these hematologic malignancies. YAP1 is under the control of a serine–threonine kinase, STK4. Importantly, genetic inactivation of STK4 restores YAP1 levels, triggering cell death in vitro and in vivo. Our data therefore identify a novel synthetic–lethal strategy to selectively target cancer cells presenting with endogenous DNA damage and low YAP1 levels
    • …
    corecore