307 research outputs found
Stretching Single Domain Proteins: Phase Diagram and Kinetics of Force-Induced Unfolding
Single molecule force spectroscopy reveals unfolding of domains in titin upon
stretching. We provide a theoretical framework for these experiments by
computing the phase diagrams for force-induced unfolding of single domain
proteins using lattice models. The results show that two-state folders (at zero
force) unravel cooperatively whereas stretching of non-two-state folders occurs
through intermediates. The stretching rates of individual molecules show great
variations reflecting the heterogeneity of force-induced unfolding pathways.
The approach to the stretched state occurs in a step-wise "quantized" manner.
Unfolding dynamics depends sensitively on topology. The unfolding rates
increase exponentially with force f till an optimum value which is determined
by the barrier to unfolding when f=0. A mapping of these results to proteins
shows qualitative agreement with force-induced unfolding of Ig-like domains in
titin. We show that single molecule force spectroscopy can be used to map the
folding free energy landscape of proteins in the absence of denaturants.Comment: 12 pages, Latex, 6 ps figure
DNA methylation-associated colonic mucosal immune and defense responses in treatment-naïve pediatric ulcerative colitis
Inflammatory bowel diseases (IBD) are emerging globally, indicating that environmental factors may be important in their pathogenesis. Colonic mucosal epigenetic changes, such as DNA methylation, can occur in response to the environment and have been implicated in IBD pathology. However, mucosal DNA methylation has not been examined in treatment-naïve patients. We studied DNA methylation in untreated, left sided colonic biopsy specimens using the Infinium HumanMethylation450 BeadChip array. We analyzed 22 control (C) patients, 15 untreated Crohn’s disease (CD) patients, and 9 untreated ulcerative colitis (UC) patients from two cohorts. Samples obtained at the time of clinical remission from two of the treatment-naïve UC patients were also included into the analysis. UC-specific gene expression was interrogated in a subset of adjacent samples (5 C and 5 UC) using the Affymetrix GeneChip PrimeView Human Gene Expression Arrays. Only treatment-naïve UC separated from control. One-hundred-and-twenty genes with significant expression change in UC (> 2-fold, P < 0.05) were associated with differentially methylated regions (DMRs). Epigenetically associated gene expression changes (including gene expression changes in the IFITM1, ITGB2, S100A9, SLPI, SAA1, and STAT3 genes) were linked to colonic mucosal immune and defense responses. These findings underscore the relationship between epigenetic changes and inflammation in pediatric treatment-naïve UC and may have potential etiologic, diagnostic, and therapeutic relevance for IBD
Probing complex RNA structures by mechanical force
RNA secondary structures of increasing complexity are probed combining single
molecule stretching experiments and stochastic unfolding/refolding simulations.
We find that force-induced unfolding pathways cannot usually be interpretated
by solely invoking successive openings of native helices. Indeed, typical
force-extension responses of complex RNA molecules are largely shaped by
stretching-induced, long-lived intermediates including non-native helices. This
is first shown for a set of generic structural motifs found in larger RNA
structures, and then for Escherichia coli's 1540-base long 16S ribosomal RNA,
which exhibits a surprisingly well-structured and reproducible unfolding
pathway under mechanical stretching. Using out-of-equilibrium stochastic
simulations, we demonstrate that these experimental results reflect the slow
relaxation of RNA structural rearrangements. Hence, micromanipulations of
single RNA molecules probe both their native structures and long-lived
intermediates, so-called "kinetic traps", thereby capturing -at the single
molecular level- the hallmark of RNA folding/unfolding dynamics.Comment: 9 pages, 9 figure
Extracting Structural Information of a Heteropolymer from Force-Extension Curves
We present a theory for the reverse analysis on the sequence information of a
single H/P two-letter random hetero-polymer (RHP) from its force-extension(f-z)
curves during quasi static stretching. Upon stretching of a self-assembled RHP,
it undergoes several structural transitions. The typical elastic response of a
hetero-polymeric globule is a set of overlapping saw-tooth patterns. With
consideration of the height and the position of the overlapping saw-tooth
shape, we analyze the possibility of extracting the binding energies of the
internal domains and the corresponding block sizes of the contributing
conformations.Comment: 5 figures 7 page
Stretched Polymers in a Poor Solvent
Stretched polymers with attractive interaction are studied in two and three
dimensions. They are described by biased self-avoiding random walks with
nearest neighbour attraction. The bias corresponds to opposite forces applied
to the first and last monomers. We show that both in and a phase
transition occurs as this force is increased beyond a critical value, where the
polymer changes from a collapsed globule to a stretched configuration. This
transition is second order in and first order in . For we
predict the transition point quantitatively from properties of the unstretched
polymer. This is not possible in , but even there we can estimate the
transition point precisely, and we can study the scaling at temperatures
slightly below the collapse temperature of the unstretched polymer. We find
very large finite size corrections which would make very difficult the estimate
of the transition point from straightforward simulations.Comment: 10 pages, 16 figure
Virus shapes and buckling transitions in spherical shells
We show that the icosahedral packings of protein capsomeres proposed by
Caspar and Klug for spherical viruses become unstable to faceting for
sufficiently large virus size, in analogy with the buckling instability of
disclinations in two-dimensional crystals. Our model, based on the nonlinear
physics of thin elastic shells, produces excellent one parameter fits in real
space to the full three-dimensional shape of large spherical viruses. The
faceted shape depends only on the dimensionless Foppl-von Karman number
\gamma=YR^2/\kappa, where Y is the two-dimensional Young's modulus of the
protein shell, \kappa is its bending rigidity and R is the mean virus radius.
The shape can be parameterized more quantitatively in terms of a spherical
harmonic expansion. We also investigate elastic shell theory for extremely
large \gamma, 10^3 < \gamma < 10^8, and find results applicable to icosahedral
shapes of large vesicles studied with freeze fracture and electron microscopy.Comment: 11 pages, 12 figure
Dynamics of folding in Semiflexible filaments
We investigate the dynamics of a single semiflexible filament, under the
action of a compressing force, using numerical simulations and scaling
arguments. The force is applied along the end to end vector at one extremity of
the filament, while the other end is held fixed. We find that, unlike in
elastic rods the filament folds asymmetrically with a folding length which
depends only on the bending stiffness and the applied force. It is shown that
this behavior can be attributed to the exponentially falling tension profile in
the filament. While the folding time depends on the initial configuration, at
late time, the distance moved by the terminal point of the filament and the
length of the fold shows a power law dependence on time with an exponent 1/2.Comment: 13 pages, Late
Emergent behavior in particle-laden microfluidic systems informs strategies for improving cell and particle separations
Colloidal particles placed in an energy landscape interact with each other, giving rise to complex dynamic behavior that affects the ability to process and manipulate suspensions of these particles. Propagating across scales ranging from the local behavior of 10's of particles to non-local behavior encompassing >10[superscript 6] particles, these particle interactions are pervasive and challenging to describe quantitatively, especially in the confined environments typical of microfluidic devices. To better understand the effects of particle interactions in this context, we have performed experiments and simulations involving a simple microfluidic device in which hydrodynamic and electrostatic forces are leveraged to concentrate and separate particle mixtures. These investigations reveal the mechanisms underlying the dynamic patterns formed by micron-scale particles as they impinge on a dielectrophoretic force barrier: their tendency to aggregate and recirculate under constant operating conditions, and to reorganize when the operating conditions are changed. The emergent behaviors of these ensembles of interacting particles exhibit features of dynamical frustration and cooperativity that suggest non-intuitive strategies for concentrating and sorting suspensions. Finally, we present a simple analytic model based on hydrodynamic coupling that captures important features of strongly interacting particle suspensions.National Institutes of Health (U.S.) (Grant EB005753)National Science Foundation (U.S.). Instrument Development for Biological Research (Grant DBI-0852654)Singapore-MIT Allianc
Single Molecule Statistics and the Polynucleotide Unzipping Transition
We present an extensive theoretical investigation of the mechanical unzipping
of double-stranded DNA under the influence of an applied force. In the limit of
long polymers, there is a thermodynamic unzipping transition at a critical
force value of order 10 pN, with different critical behavior for homopolymers
and for random heteropolymers. We extend results on the disorder-averaged
behavior of DNA's with random sequences to the more experimentally accessible
problem of unzipping a single DNA molecule. As the applied force approaches the
critical value, the double-stranded DNA unravels in a series of discrete,
sequence-dependent steps that allow it to reach successively deeper energy
minima. Plots of extension versus force thus take the striking form of a series
of plateaus separated by sharp jumps. Similar qualitative features should
reappear in micromanipulation experiments on proteins and on folded RNA
molecules. Despite their unusual form, the extension versus force curves for
single molecules still reveal remnants of the disorder-averaged critical
behavior. Above the transition, the dynamics of the unzipping fork is related
to that of a particle diffusing in a random force field; anomalous,
disorder-dominated behavior is expected until the applied force exceeds the
critical value for unzipping by roughly 5 pN.Comment: 40 pages, 18 figure
High cable forces deteriorate pinch force control in voluntary-closing body-powered prostheses
It is generally asserted that reliable and intuitive control of upper-limb prostheses requires adequate feedback of prosthetic finger positions and pinch forces applied to objects. Body-powered prostheses (BPPs) provide the user with direct proprioceptive feedback. Currently available BPPs often require high cable operation forces, which complicates control of the forces at the terminal device.
The aim of this study is to quantify the influence of high cable forces on object manipulation with voluntary-closing prostheses. Able-bodied male subjects were fitted with a bypass-prosthesis with low and high cable force settings for the prehensor. Subjects were requested to grasp and transfer a collapsible object as fast as they could without dropping or breaking it. The object had a low and a high breaking force setting. Subjects conducted significantly more successful manipulations with the low cable force setting, both for the low (33 % more) and high (50 %) object’s breaking force. The time to complete the task was not different between settings during successful manipulation trials. In conclusion: high cable forces lead to reduced pinch force control during object manipulation. This implies that low cable operation forces should be a key design requirement for voluntary-closing BPPs
- …
