28 research outputs found

    Suppressed Magnetization at the Surfaces and Interfaces of Ferromagnetic Metallic Manganites

    Full text link
    What happens to ferromagnetism at the surfaces and interfaces of manganites? With the competition between charge, spin, and orbital degrees of freedom, it is not surprising that the surface behavior may be profoundly different than that of the bulk. Using a powerful combination of two surface probes, tunneling and polarized x-ray interactions, this paper reviews our work on the nature of the electronic and magnetic states at manganite surfaces and interfaces. The general observation is that ferromagnetism is not the lowest energy state at the surface or interface, which results in a suppression or even loss of ferromagnetic order at the surface. Two cases will be discussed ranging from the surface of the quasi-2D bilayer manganite (La2−2x_{2-2x}Sr1+2x_{1+2x}Mn2_2O7_7) to the 3D Perovskite (La2/3_{2/3}Sr1/3_{1/3}MnO3_3)/SrTiO3_3 interface. For the bilayer manganite, that is, ferromagnetic and conducting in the bulk, these probes present clear evidence for an intrinsic insulating non-ferromagnetic surface layer atop adjacent subsurface layers that display the full bulk magnetization. This abrupt intrinsic magnetic interface is attributed to the weak inter-bilayer coupling native to these quasi-two-dimensional materials. This is in marked contrast to the non-layered manganite system (La2/3_{2/3}Sr1/3_{1/3}MnO3_3/SrTiO3_3), whose magnetization near the interface is less than half the bulk value at low temperatures and decreases with increasing temperature at a faster rate than the bulk.Comment: 15 pages, 13 figure

    Kondo screening of the spin and orbital magnetic moments of Fe impurities in Cu

    Get PDF
    We use x-ray magnetic circular dichroism to evidence the effect of correlations on the local impurity magnetic moment in an archetypal Kondo system, namely, a dilute Cu:Fe alloy. Applying the sum rules on the Fe L2,3 absorption edges, the evolution of the spin and orbital moments across the Kondo temperature are determined separately. The spin moment presents a crossover from a nearly temperature-independent regime below the Kondo temperature to a paramagneticlike regime above. Conversely, the weak orbital moment shows a temperature-independent behavior in the whole temperature range, suggesting different Kondo screening temperature scales for the spin and orbital moments

    Controlling exchange bias in Fe3O4/FeO composite particles prepared by pulsed laser irradiation

    Get PDF
    Spherical iron oxide nanocomposite particles composed of magnetite and wustite have been successfully synthesized using a novel method of pulsed laser irradiation in ethyl acetate. Both the size and the composition of nanocomposite particles are controlled by laser irradiation condition. Through tuning the laser fluence, the Fe3O4/FeO phase ratio can be precisely controlled, and the magnetic properties of final products can also be regulated. This work presents a successful example of the fabrication of ferro (ferri) (FM)/antiferromagnetic (AFM) systems with high chemical stability. The results show this novel simple method as widely extendable to various FM/AFM nanocomposite systems

    Enhanced magnetic properties in antiferromagnetic-core/ferrimagnetic-shell nanoparticles

    Get PDF
    Bi-magnetic core/shell nanoparticles are gaining increasing interest due to their foreseen applications. Inverse antiferromagnetic(AFM)/ferrimagnetic(FiM) core/shell nanoparticles are particularly appealing since they may overcome some of the limitations of conventional FiM/AFM systems. However, virtually no simulations exist on this type of morphology. Here we present systematic Metropolis Monte Carlo simulations of the exchange bias properties of such nanoparticles. The coercivity, H C, and loop shift, H ex, present a non-monotonic dependence with the core diameter and the shell thickness, in excellent agreement with the available experimental data. Additionally, we demonstrate novel unconventional behavior in FiM/AFM particles. Namely, while H C and H ex decrease upon increasing FiM thickness for small AFM cores (as expected), they show the opposite trend for large cores. This presents a counterintuitive FiM size dependence for large AFM cores that is attributed to the competition between core and shell contributions, which expands over a wider range of core diameters leading to non-vanishing H ex even for very large cores. Moreover, the results also hint different possible ways to enhance the experimental performance of inverse core/shell nanoparticles for diverse applications

    Kondo screening of the spin and orbital magnetic moments of Fe impurities in Cu

    No full text
    We demonstrate by analysing a model dilute Kondo alloy that x-ray magnetic circular dichroism (XMCD) is able to evidence the Kondo regime. The temperature evolution of the d spin and orbital magnetic moments of Fe impurities in highly diluted Cu:Fe alloys is measured. XMCD is also a unique technique which enables the direct and separate measurement of the spin and orbital moments of a Kondo impurity
    corecore