5,854 research outputs found

    Quantum entanglement, unitary braid representation and Temperley-Lieb algebra

    Get PDF
    Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a specific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum gates can be constructed from braiding operators together with single qubit gates. In this paper we present a new class of braiding operators from the Temperley-Lieb algebra that generalizes the Bell matrix to multi-qubit systems, thus unifying the Hadamard and Bell matrices within the same framework. Unlike previous braiding operators, these new operators generate {\it directly}, from separable basis states, important entangled states such as the generalized Greenberger-Horne-Zeilinger states, cluster-like states, and other states with varying degrees of entanglement.Comment: 5 pages, no figur

    Estimating the conditions for polariton condensation in organic thin-film microcavities

    Full text link
    We examine the possibility of observing Bose condensation of a confined two-dimensional polariton gas in an organic quantum well. We deduce a suitable parameterization of a model Hamiltonian based upon the cavity geometry, the biexciton binding energy, and similar spectroscopic and structural data. By converting the sum-over-states to a semiclassical integration over dd-dimensional phase space, we show that while an ideal 2-D Bose gas will not undergo condensation, an interacting gas with the Bogoliubov dispersion H(p)spH(p)\approx s p close to p=0p=0 will undergo Bose condensation at a given critical density and temperature. We show that Tc/ρcT_c/\sqrt{\rho_c} is sensitive to both the cavity geometry and to the biexciton binding energy. In particular, for strongly bound biexcitons, the non-linear interaction term appearing in the Gross-Pitaevskii equation becomes negative and the resulting ground state will be a localized soliton state rather than a delocalized Bose condensate.Comment: 2 figure

    THE CONCEPT OF HAPPY: BARTONVILLE, ILLINOIS

    Get PDF
    While working to solve the underlying multiplicity of issues, Bartonville will need to focus on being HAPPY; that is the residents will need to actively engage in Health, Advancement, Purpose, Preservation, and Youth. The concepts of HAPPY are proposed to be expressed architecturally in the form of a community center

    The Number of Different Binary Functions Generated by NK-Kauffman Networks and the Emergence of Genetic Robustness

    Full text link
    We determine the average number ϑ(N,K) \vartheta (N, K) , of \textit{NK}-Kauffman networks that give rise to the same binary function. We show that, for N1 N \gg 1 , there exists a connectivity critical value Kc K_c such that ϑ(N,K)eϕN \vartheta(N,K) \approx e^{\phi N} (ϕ>0 \phi > 0 ) for K<Kc K < K_c and ϑ(N,K)1\vartheta(N,K) \approx 1 for K>Kc K > K_c . We find that Kc K_c is not a constant, but scales very slowly with N N , as Kclog2log2(2N/ln2) K_c \approx \log_2 \log_2 (2N / \ln 2) . The problem of genetic robustness emerges as a statistical property of the ensemble of \textit{NK}-Kauffman networks and impose tight constraints in the average number of epistatic interactions that the genotype-phenotype map can have.Comment: 4 figures 18 page

    Residue network in protein native structure belongs to the universality class of three dimensional critical percolation cluster

    Full text link
    A single protein molecule is regarded as a contact network of amino-acid residues. Some studies have indicated that this network is a small world network (SWN), while other results have implied that this is a fractal network (FN). However, SWN and FN are essentially different in the dependence of the shortest path length on the number of nodes. In this paper, we investigate this dependence in the residue contact networks of proteins in native structures, and show that the networks are not SWN but FN. FN is generally characterized by several dimensions. Among them, we focus on three dimensions; the network topological dimension DcD_c, the fractal dimension DfD_f, and the spectral dimension DsD_s. We find that proteins universally yield Dc1.9D_c \approx 1.9, Df2.5D_f \approx 2.5 and Ds1.3Ds \approx 1.3. These values are in surprisingly good coincidence with those in three dimensional critical percolation cluster. Hence the residue contact networks in the protein native structures belong to the universality class of three dimensional percolation cluster. The criticality is relevant to the ambivalent nature of the protein native structures, i.e., the coexistence of stability and instability, both of which are necessary for a protein to function as a molecular machine or an allosteric enzyme.Comment: 4 pages, 3 figure

    Distinguishing scalar from pseudoscalar Higgs production at the LHC

    Full text link
    In this letter we examine the production channels for the scalar or pseudoscalar Higgs plus two jets at the CERN Large Hadron Collider (LHC). We identify possible signals for distinguishing between a scalar and a pseudoscalar Higgs boson.Comment: 7 pages, REVTeX4, 4 eps figures. Figure 1 and 4 replaced. Typos corrected, additional reference adde

    Self-organized Networks of Competing Boolean Agents

    Full text link
    A model of Boolean agents competing in a market is presented where each agent bases his action on information obtained from a small group of other agents. The agents play a competitive game that rewards those in the minority. After a long time interval, the poorest player's strategy is changed randomly, and the process is repeated. Eventually the network evolves to a stationary but intermittent state where random mutation of the worst strategy can change the behavior of the entire network, often causing a switch in the dynamics between attractors of vastly different lengths.Comment: 4 pages, 3 included figures. Some text revision and one new figure added. To appear in PR

    Robustness of Transcriptional Regulation in Yeast-like Model Boolean Networks

    Get PDF
    We investigate the dynamical properties of the transcriptional regulation of gene expression in the yeast Saccharomyces Cerevisiae within the framework of a synchronously and deterministically updated Boolean network model. By means of a dynamically determinant subnetwork, we explore the robustness of transcriptional regulation as a function of the type of Boolean functions used in the model that mimic the influence of regulating agents on the transcription level of a gene. We compare the results obtained for the actual yeast network with those from two different model networks, one with similar in-degree distribution as the yeast and random otherwise, and another due to Balcan et al., where the global topology of the yeast network is reproduced faithfully. We, surprisingly, find that the first set of model networks better reproduce the results found with the actual yeast network, even though the Balcan et al. model networks are structurally more similar to that of yeast.Comment: 7 pages, 4 figures, To appear in Int. J. Bifurcation and Chaos, typos were corrected and 2 references were adde
    corecore