4,460 research outputs found

    Heterogeneous condensation of the Lennard-Jones vapor onto a nanoscale seed particle

    Full text link
    The heterogeneous condensation of a Lennard-Jones vapor onto a nanoscale seed particle is studied using molecular dynamics simulations. Measuring the nucleation rate and the height of the free energy barrier using the mean first passage time method shows that the presence of a weakly interacting seed has little effect on the work of forming very small cluster embryos but accelerates the rate by lowering the barrier for larger clusters. We suggest that this results from a competition between the energetic and entropic features of cluster formation in the bulk and at the heterogeneity. As the interaction is increased, the free energy of formation is reduced for all cluster sizes. We also develop a simple phenomenological model of film formation on a small seed that captures the general features of the nucleation process for small heterogeneities. A comparison of our simulation results with the model shows that heterogeneous classical nucleation theory provides a good estimate of the critical size of the film but significantly over-estimates the size of the barrier.Comment: 9 pages, 10 figures, In Print J. Chem. Phy

    Landscapes, dynamic heterogeneity and kinetic facilitation in a simple off-lattice model

    Full text link
    We present a simple off-lattice hard-disc model that exhibits glassy dynamics. The inherent structures are enumerated exactly, transitions between metabasins are well understood, and the particle configurations that act to facilitate dynamics are easily identified. The model readily maps to a coarse grained dynamic facilitation description.Comment: 5 pages, 5 figures, submitted to PR

    Accuracy of the QUAD4 thick shell element

    Get PDF
    The accuracy of the relatively new QUAD4 thick shell element is assessed via comparison with a theoretical solution for thick homogeneous and honeycomb flat simply supported plates under the action of a uniform pressure load. The theoretical thick plate solution is based on the theory developed by Reissner and includes the effects of transverse shear flexibility which are not included in the thin plate solutions based on Kirchoff plate theory. In addition, the QUAD4 is assessed using a set of finite element test problems developed by the MacNeal-Schwendler Corp. (MSC). Comparison of the COSMIC QUAD4 element as well as those from MSC and Universal Analytics, Inc. (UAI) for these test problems is presented. The current COSMIC QUAD4 element is shown to have excellent comparison with both the theoretical solutions and also those from the two commercial versions of NASTRAN that it was compared to

    Solar Neutrinos with Three Flavor Mixings

    Get PDF
    The recent 71Ga solar neutrino observation is combined with the 37Cl and Kamiokande-II observations in an analysis for neutrino masses and mixings. The allowed parameter region is found for matter enhanced mixings among all three neutrino flavors. Distortions of the solar neutrino spectrum unique to three flavors are possible and may be observed in continuing and next generation experiments.Comment: August 1992 (Revised) PURD-TH-92-

    A History of Falls is Associated with a Significant Increase in Acute Mortality in Women after Stroke

    Get PDF
    Background and Purpose: The risks of falls and fractures increase after stroke. Little is known about the prognostic significance of previous falls and fractures after stroke. This study examined whether having a history of either event is associated with poststroke mortality. Methods: We analyzed stroke register data collected prospectively between 2003 and 2015. Eight sex-specific models were analyzed, to which the following variables were incrementally added to examine their potential confounding effects: age, type of stroke, Oxfordshire Community Stroke Project classification, previous comorbidities, frailty as indicated by the prestroke modified Rankin Scale score, and acute illness parameters. Logistic regression was applied to investigate in-hospital and 30-day mortality, and Cox proportional-hazards models were applied to investigate longer-term outcomes of mortality. Results: In total, 10,477 patients with stroke (86.1% ischemic) were included in the analysis. They were aged 77.7±11.9 years (mean±SD), and 52.2% were women. A history of falls was present in 8.6% of the men (n=430) and 20.2% of the women (n=1,105), while 3.8% (n=189) of the men and 12.9% of the women (n=706) had a history of both falls and fractures. Of the outcomes examined, a history of falls alone was associated with increased in-hospital mortality [odds ratio (OR)=1.33, 95% confidence interval (CI)=1.03–1.71] and 30-day mortality (OR=1.34, 95% CI=1.03–1.73) in women in the fully adjusted models. The Cox proportional-hazards models for longer-term outcomes and the history of falls and fractures combined showed no significant results. Conclusions: The history of falls is an important factor for acute stroke mortality in women. A previous history of falls may therefore be an important factor to consider in the short-term stroke prognosis, particularly in women

    Evolutionary Roots of Property Rights; The Natural and Cultural Nature of Human Cooperation

    Get PDF
    Debates about the role of natural and cultural selection in the development of prosocial, antisocial and socially neutral mechanisms and behavior raise questions that touch property rights, cooperation, and conflict. For example, some researchers suggest that cooperation and prosociality evolved by natural selection (Hamilton 1964, Trivers 1971, Axelrod and Hamilton 1981, De Waal 2013, 2014), while others claim that natural selection is insufficient for the evolution of cooperation, which required in addition cultural selection (Sterelny 2013, Bowles and Gintis 2003, Seabright 2013, Norenzayan 2013). Some scholars focus on the complexity and hierarchical nature of the evolution of cooperation as involving different tools associated with lower and the higher levels of competition (Nowak 2006, Okasha 2006); others suggest that humans genetically inherited heuristics that favor prosocial behavior such as generosity, forgiveness or altruistic punishment (Ridley 1996, Bowles and Gintis 2004, Rolls 2005). We argue these mechanisms are not genetically inherited; rather, they are features inherited through cultural selection. To support this view we invoke inclusive fitness theory, which states that individuals tend to maximize their inclusive fitness, rather than maximizing group fitness. We further reject the older notion of natural group selection - as well as more recent versions (West, Mouden, Gardner 2011) – which hold that natural selection favors cooperators within a group (Wynne-Edwards 1962). For Wynne-Edwards, group selection leads to group adaptations; the survival of individuals therefore depends on the survival of the group and a sharing of resources. Individuals who do not cooperate, who are selfish, face extinction due to rapid and over-exploitation of resources

    Connecting Returned Apollo Soils and Remote Sensing: Application to the Diviner Lunar Radiometer

    Get PDF
    The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context, returned Apollo samples. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. It has been established previously that thermal infrared spectra measured in simulated lunar environment (SLE) are significantly altered from spectra measured under terrestrial or martian conditions. The data presented here were collected at the University of Oxford Simulated Lunar Environment Chamber (SLEC). In SLEC, we simulate the lunar environment by: (1) pumping the chamber to vacuum pressures (less than 104 mbar) sufficient to simulate lunar heat transport processes within the sample, (2) cooling the chamber with liquid nitrogen to simulate radiation to the cold space environment, and (3) heating the samples with heaters and lamp to setup thermal gradients similar to those experienced in the upper hundreds of microns of the lunar surface. We then conducted a comprehensive suite of experiments using different sample preparation and heating conditions on Apollo soils 15071 (maria) and 67701 (highland) and compared the results to Diviner noontime data to select the optimal experimental conditions. This study includes thermal infrared SLE measurements of 10084 (A11 - LM), 12001 (A12 - LM), 14259 (A14 - LM), 15071 (A15 - S1), 15601 (A15 - S9a), 61141 (A16 - S1), 66031 (A16 - S6), 67701 (A16 - S11), and 70181 (A17 - LM). The Diviner dataset includes all six Apollo sites at approximately 200 m spatial resolution We find that analyses of Diviner observations of individual sampling stations and SLE measurements returned Apollo soils show good agreement, while comparisons to thermal infrared reflectance under ambient conditions do not agree well, which underscores the need for SLE measurements and validates the Diviner compositional measurement technique

    The Benefits of Sample Return: Connecting Apollo Soils and Diviner Lunar Radiometer Remote Sensing Data

    Get PDF
    The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. We find that analyses of Diviner observations of individual sampling stations and SLE measurements of returned Apollo soils show good agreement, while comparisons to thermal infrared reflectance under terrestrial conditions do not agree well, which underscores the need for SLE measurements and validates the Diviner compositional dataset. Future work includes measurement of additional soils in SLE and cross comparisons with measurements in JPL Simulated Airless Body Emission Laboratory (SABEL)

    Using Apollo Sites and Soils to Compositionally Ground Truth Diviner Lunar Radiometer Observations

    Get PDF
    Apollo landing sites and returned soils afford us a unique opportunity to "ground truth" Diviner Lunar Radiometer compositional observations, which are the first global, high resolution , thermal infrared measurements of an airless body. The Moon is the most accessible member of the most abundant class of solar system objects, which includes Mercury, asteroids, and icy satellites. And the Apollo samples returned from the Moon are the only extraterrestrial samples with known spatial context. Here we compare Diviner observations of Apollo landing sites and compositional and spectral laboratory measurements of returned Apollo soils. Diviner, onboard NASA's Lunar Reconnaissance Orbiter, has three spectral channels near 8 micron that were designed to characterize the mid-infrared emissivity maximum known as the Christiansen feature (CF), a well-studied indicator of silicate mineralogy. It has been observed that thermal infrared spectra measured in simulated lunar environment (SLE) are significantly altered from spectra measured under terrestrial or martian conditions, with enhanced CF contrast and shifted CF position relative to other spectral features. Therefore only thermal emission experiments conducted in SLE are directly comparable to Diviner data. With known compositions, Apollo landing sites and soils are important calibration points for the Diviner dataset, which includes all six Apollo sites at approximately 200 m spatial resolution. Differences in measured CFs caused by composition and space weathering are apparent in Diviner data. Analyses of Diviner observations and SLE measurements for a range of Apollo soils show good agreement, while comparisons to thermal reflectance measurements under ambient conditions do not agree well, which underscores the need for SLE measurements and validates our measurement technique. Diviner observations of Apollo landing sites are also correlated with geochemical measurements of Apollo soils from the Lunar Sample Compendium. In particular, the correlations between CF and FeO and AI203 are very strong, owing to the dependence on the feldspar-mafic ratio. Our analyses suggest that Diviner data may offer an independent measure of soil iron content from the existing optical and gamma-ray spectrometer datasets

    Compositional Ground Truth of Diviner Lunar Radiometer Observations

    Get PDF
    The Moon affords us a unique opportunity to "ground truth" thermal infrared (i.e. 3 to 25 micron) observations of an airless body. The Moon is the most accessable member of the most abundant class of solar system bodies, which includes Mercury, astroids, and icy satellites. The Apollo samples returned from the Moon are the only extraterrestrial samples with known spatial context. And the Diviner Lunar Radiometer (Diviner) is the first instrument to globally map the spectral thermal emission of an airless body. Here we compare Diviner observations of Apollo sites to compositional and spectral measurements of Apollo lunar soil samples in simulated lunar environment (SLE)
    corecore