3,272 research outputs found
Two-Dimensional Hydrodynamics of Pre-Core Collapse: Oxygen Shell Burning
By direct hydrodynamic simulation, using the Piecewise Parabolic Method (PPM)
code PROMETHEUS, we study the properties of a convective oxygen burning shell
in a SN 1987A progenitor star prior to collapse. The convection is too
heterogeneous and dynamic to be well approximated by one-dimensional
diffusion-like algorithms which have previously been used for this epoch.
Qualitatively new phenomena are seen.
The simulations are two-dimensional, with good resolution in radius and
angle, and use a large (90-degree) slice centered at the equator. The
microphysics and the initial model were carefully treated. Many of the
qualitative features of previous multi-dimensional simulations of convection
are seen, including large kinetic and acoustic energy fluxes, which are not
accounted for by mixing length theory. Small but significant amounts of
carbon-12 are mixed non-uniformly into the oxygen burning convection zone,
resulting in hot spots of nuclear energy production which are more than an
order of magnitude more energetic than the oxygen flame itself. Density
perturbations (up to 8%) occur at the `edges' of the convective zone and are
the result of gravity waves generated by interaction of penetrating flows into
the stable region. Perturbations of temperature and electron fraction at the
base of the convective zone are of sufficient magnitude to create angular
inhomogeneities in explosive nucleosynthesis products, and need to be included
in quantitative estimates of yields. Combined with the plume-like velocity
structure arising from convection, the perturbations will contribute to the
mixing of nickel-56 throughout supernovae envelopes. Runs of different
resolution, and angular extent, were performed to test the robustness of theseComment: For mpeg movies of these simulations, see
http://www.astrophysics.arizona.edu/movies.html Submitted to the
Astrophysical Journa
Algal culture studies for CELSS
Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities
Activation of the P2Y2 receptor regulates bone cell function by enhancing ATP release
Bone cells constitutively release ATP into the extracellular environment where it acts locally via P2 receptors to regulate bone cell function. Whilst P2Y2 receptor stimulation regulates bone mineralisation, the functional effects of this receptor in osteoclasts remain unknown. This investigation used the P2Y2 receptor knockout (P2Y2Râ/â) mouse model to investigate the role of this receptor in bone. MicroCT analysis of P2Y2Râ/â mice demonstrated age-related increases in trabecular bone volume (â€48%), number (â€30%) and thickness (â€17%). In vitro P2Y2Râ/â osteoblasts displayed a 3-fold increase in bone formation and alkaline phosphatase activity, whilst P2Y2Râ/â osteoclasts exhibited a 65% reduction in resorptive activity. Serum cross-linked C-telopeptide levels (CTX, resorption marker) were also decreased (â€35%). The resorption defect in P2Y2Râ/â osteoclasts was rescued by the addition of exogenous ATP, suggesting that an ATP deficit could be a key factor in the reduced function of these cells. In agreement, we found that basal ATP release was reduced up to 53% in P2Y2Râ/â osteoclasts. The P2Y2 receptor agonists, UTP and 2-thioUTP, increased osteoclast activity and ATP release in wild-type but not in P2Y2Râ/â cells. This indicates that the P2Y2 receptor may regulate osteoclast function indirectly by promoting ATP release. UTP and 2-thioUTP also stimulate ATP release from osteoblasts suggesting that the P2Y2 receptor exerts a similar function in these cells. Taken together, our findings are consistent with the notion that the primary action of P2Y2 receptor signalling in bone is to regulate extracellular ATP levels
University of Kentucky Rural Physician Leadership Program: A Programmatic Review
This article describes the characteristics and results of the Rural Physician Leadership Program (RPLP) at the University of Kentucky College of Medicine. RPLP is a successful example of a regional medical campus designed to train physicians at a regional medical campus to serve rural areas through local partnerships
A Finite Difference Representation of Neutrino Radiation Hydrodynamics in Spherically Symmetric General Relativistic Space-Time
We present an implicit finite difference representation for general
relativistic radiation hydrodynamics in spherical symmetry. Our code,
Agile-Boltztran, solves the Boltzmann transport equation for the angular and
spectral neutrino distribution functions in self-consistent simulations of
stellar core collapse and postbounce evolution. It implements a dynamically
adaptive grid in comoving coordinates. Most macroscopically interesting
physical quantities are defined by expectation values of the distribution
function. We optimize the finite differencing of the microscopic transport
equation for a consistent evolution of important expectation values. We test
our code in simulations launched from progenitor stars with 13 solar masses and
40 solar masses. ~0.5 s after core collapse and bounce, the protoneutron star
in the latter case reaches its maximum mass and collapses further to form a
black hole. When the hydrostatic gravitational contraction sets in, we find a
transient increase in electron flavor neutrino luminosities due to a change in
the accretion rate. The muon- and tauon-neutrino luminosities and rms energies,
however, continue to rise because previously shock-heated material with a
non-degenerate electron gas starts to replace the cool degenerate material at
their production site. We demonstrate this by supplementing the concept of
neutrinospheres with a more detailed statistical description of the origin of
escaping neutrinos. We compare the evolution of the 13 solar mass progenitor
star to simulations with the MGFLD approximation, based on a recently developed
flux limiter. We find similar results in the postbounce phase and validate this
MGFLD approach for the spherically symmetric case with standard input physics.Comment: reformatted to 63 pages, 24 figures, to be published in ApJ
Neutrino-driven Explosions
The question why and how core-collapse supernovae (SNe) explode is one of the
central and most long-standing riddles of stellar astrophysics. A solution is
crucial for deciphering the SN phenomenon, for predicting observable signals
such as light curves and spectra, nucleosynthesis, neutrinos, and gravitational
waves, for defining the role of SNe in the evolution of galaxies, and for
explaining the birth conditions and properties of neutron stars (NSs) and
stellar-mass black holes. Since the formation of such compact remnants releases
over hundred times more energy in neutrinos than the SN in the explosion,
neutrinos can be the decisive agents for powering the SN outburst. According to
the standard paradigm of the neutrino-driven mechanism, the energy transfer by
the intense neutrino flux to the medium behind the stagnating core-bounce
shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the
term "turbulence"), revives the outward shock motion and thus initiates the SN
blast. Because of the weak coupling of neutrinos in the region of this energy
deposition, detailed, multidimensional hydrodynamic models including neutrino
transport and a wide variety of physics are needed to assess the viability of
the mechanism. Owing to advanced numerical codes and increasing supercomputer
power, considerable progress has been achieved in our understanding of the
physical processes that have to act in concert for the success of
neutrino-driven explosions. First studies begin to reveal observational
implications and avenues to test the theoretical picture by data from
individual SNe and SN remnants but also from population-integrated observables.
While models will be further refined, a real breakthrough is expected through
the next Galactic core-collapse SN, when neutrinos and gravitational waves can
be used to probe the conditions deep inside the dying star. (abridged)Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A.
Alsabti and P. Murdin, Springer. 54 pages, 13 figure
Screened thermonuclear reactions and predictive stellar evolution of detached double-lined eclipsing binaries
The low energy fusion cross sections of charged-particle nuclear reactions
(and the respective reaction rates) in stellar plasmas are enhanced due to
plasma screening effects. We study the impact of those effects on predictive
stellar evolution simulations for detached double-lined eclipsing binaries. We
follow the evolution of binary systems (pre-main sequence or main sequence
stars) with precisely determined radii and masses from 1.1Mo to 23Mo (from
their birth until their present state). The results indicate that all the
discrepancies between the screened and unscreened models (in terms of
luminosity, stellar radius, and effective temperature) are within the
observational uncertainties. Moreover, no nucleosynthetic or compositional
variation was found due to screening corrections. Therefore all thermonuclear
screening effects on the charged-particle nuclear reactions that occur in the
binary stars considered in this work (from their birth until their present
state) can be totally disregarded. In other words, all relevant
charged-particle nuclear reactions can be safely assumed to take place in a
vacuum, thus simplifying and accelerating the simulation processes.Comment: 5 RevTex pages,no figures. Accepted for publication in Phys.Rev.
Differing calcification processes in cultured vascular smooth muscle cells and osteoblasts
© 2019 Published by Elsevier Inc.Arterial medial calcification (AMC) is the deposition of calcium phosphate mineral, often as hydroxyapatite, inthe medial layer of the arteries. AMC shares some similarities to skeletal mineralisation and has been associatedwith the transdifferentiation of vascular smooth muscle cells (VSMCs) towards an osteoblast-like phenotype. Thisstudy used primary mouse VSMCs and calvarial osteoblasts to directly compare the established and widely usedin vitromodels of AMC and bone formation. Significant differences were identified between osteoblasts andcalcifying VSMCs. First, osteoblasts formed large mineralised bone nodules that were associated with widespreaddeposition of an extracellular collagenous matrix. In contrast, VSMCs formed small discrete regions of calcifi-cation that were not associated with collagen deposition and did not resemble bone. Second, calcifying VSMCsdisplayed a progressive reduction in cell viability over time (â€7-fold), with a 50% increase in apoptosis,whereas osteoblast and control VSMCs viability remained unchanged. Third, osteoblasts expressed high levels ofalkaline phosphatase (TNAP) activity and TNAP inhibition reduced bone formation by to 90%. TNAP activity incalcifying VSMCs wasâŒ100-fold lower than that of bone-forming osteoblasts and cultures treated withÎČ-gly-cerophosphate, a TNAP substrate, did not calcify. Furthermore, TNAP inhibition had no effect on VSMC calci-fication. Although, VSMC calcification was associated with increased mRNA expression of osteoblast-relatedgenes (e.g. Runx2, osterix, osteocalcin, osteopontin), the relative expression of these genes was up to 40-foldlower in calcifying VSMCs versus bone-forming osteoblasts. In summary, calcifying VSMCsin vitrodisplay somelimited osteoblast-like characteristics but also differ in several key respects: 1) their inability to form collagen-containing bone; 2) their lack of reliance on TNAP to promote mineral deposition; and, 3) the deleterious effectof calcification on their viability.Peer reviewedFinal Published versio
Modeling core collapse supernovae in 2 and 3 dimensions with spectral neutrino transport
The overwhelming evidence that the core collapse supernova mechanism is
inherently multidimensional, the complexity of the physical processes involved,
and the increasing evidence from simulations that the explosion is marginal
presents great computational challenges for the realistic modeling of this
event, particularly in 3 spatial dimensions. We have developed a code which is
scalable to computations in 3 dimensions which couples PPM Lagrangian with
remap hydrodynamics [1], multigroup, flux-limited diffusion neutrino transport
[2], with many improvements), and a nuclear network [3]. The neutrino transport
is performed in a ray-by-ray plus approximation wherein all the lateral effects
of neutrinos are included (e.g., pressure, velocity corrections, advection)
except the transport. A moving radial grid option permits the evolution to be
carried out from initial core collapse with only modest demands on the number
of radial zones. The inner part of the core is evolved after collapse along
with the rest of the core and mantle by subcycling the lateral evolution near
the center as demanded by the small Courant times. We present results of 2-D
simulations of a symmetric and an asymmetric collapse of both a 15 and an 11 M
progenitor. In each of these simulations we have discovered that once the
oxygen rich material reaches the shock there is a synergistic interplay between
the reduced ram pressure, the energy released by the burning of the shock
heated oxygen rich material, and the neutrino energy deposition which leads to
a revival of the shock and an explosion.Comment: 10 pages, 3 figure
Applicant Selection to a Regional Medical Training Program: A Structural Analysis of Interviewer Assessments
Introduction: For regional campuses with specific program foci, assessing applicant fit necessarily extends beyond academic and professional factors. Based on assessments of applicants to a regional Rural Physician Leadership Program (RPLP), this study explores the relationship of academic and socio-demographic factors with interviewersâ ratings of: (1) likelihood of eventually practicing in a rural area of the state; and (2) overall acceptability to medical school.
Methods: The study population consisted of 163 first-time RPLP applicants interviewed independently from 2009-2016 by two faculty members at both main and regional medical campuses. Path analysis was used to calculate direct, indirect, and total effects of applicantsâ socio-demographic and academic characteristics on interviewersâ composite ratings. This study protocol (#17-0198-X3B) was approved as exempt by the governing Institutional Review Board; the authors report no conflicts of interest.
Results: The combined influence of being an in-state resident with rural Appalachian origins, combined with undergraduate GPA, explained 40.7% of the variance in applicantsâ predicted likelihood of practicing in rural Kentucky. In terms of applicant acceptability, the strongest direct effects were exerted by academic factors, GPA and total MCAT score, and the sole preceding endogenous variable: likelihood of rural in-state practice. However, two other background factors were modestly but significantly directly associated with overall acceptability: (1) age; and (2) residence. Specifying likelihood of rural practice as an intervening variable explained 42.5% of the variance in applicant acceptability and provided a good fit to the sample data (X2 = 3.19, df = 4, p = .526, CFI = 1.000, RLI = 1.018, RMSEA = .000).
Conclusions: Interviewers appear to be assessing programmatic, mission-specific âfitâ within the broader context of applicantsâ abilities to navigate a demanding professional training curriculum. Future research should examine graduatesâ eventual practice locations and intermediate academic performance as empirical validity of faculty interviewersâ assessments. Similarly, pre-professional pipeline efforts should better coordinate with training programs to provide consistent opportunities to nurture interest in mission-specific outcomes
- âŠ