54 research outputs found

    Submicrometer Pattern Fabrication by Intensification of Instability in Ultrathin Polymer Films under a Water-Solvent Mix

    Full text link
    Dewetting of ultrathin (< 100 nm) polymer films, by heating above the glass transition, produces droplets of sizes of the order of microns and mean separations between droplets of the order of tens of microns. These relatively large length scales are because of the weak destabilizing van der Waals forces and the high surface energy penalty required for deformations on small scales. We show a simple, one-step versatile method to fabricate sub-micron (>~100 nm) droplets and their ordered arrays by room temperature dewetting of ultrathin polystyrene (PS) films by minimizing these limitations. This is achieved by controlled room temperature dewetting under an optimal mixture of water, acetone and methyl-ethyl ketone (MEK). Diffusion of organic solvents in the film greatly reduces its glass transition temperature and the interfacial tension, but enhances the destabilizing field by introduction of electrostatic force. The latter is reflected in a change in the exponent, n of the instability length scale, {\lambda} ~h^n, where h is the film thickness and n = 1.51 \pm 0.06 in the case of water-solvent mix, as opposed to its value of 2.19 \pm 0.07 for dewetting in air. The net outcome is more than one order of magnitude reduction in the droplet size as well as their mean separation and also a much faster dynamics of dewetting. We also demonstrate the use of this technique for controlled dewetting on topographically patterned substrates with submicrometer features where dewetting in air is either arrested, incomplete or unable to produce ordered patterns

    Formation of Multigradient Porous Surfaces for Selective Bacterial Entrapment

    Full text link
    Herein we describe the preparation of multigradient porous platforms by using the breath figures approach. In a single and straightforward step, we prepared porous surfaces in which three different parameters vary gradually from the edge of the sample to the center in a radial manner. Thus, we evidenced the gradual variation of the pore size and the shape of the pores that can be varied, depending on the sample concentration, but also depending on their radial position within the same sample. In addition, we succeeded in the control over the chemical composition inside and outside the pores as well as the variation of the concentration of block copolymer inside the pores as a function of their radial position. Moreover, the chemical composition and the variable cavity size of porous surfaces have been evaluated to analyze the influence of these variables on the selective bacterial immobilization. To the best of our knowledge this is the first example in which, by using a simple one-step strategy, a multigradient surface can be obtained. These initial results can be the base to construct platforms for selective immobilization and isolation of bacteria.Peer Reviewe

    Micromechanical properties of glassy and rubbery polymer brush layers as probed by atomic force microscopy

    No full text
    Abstract Carboxylic acid terminated polystyrene and polybutylacrylate were grafted from melt onto a silicon substrate modified with the epoxysilane monolayer. The tethered layers fabricated from polymers of different molecular weights are smooth, uniform, mechanically stable, and cover homogeneously the modified silicon surface. Micromechanical properties of the dry glassy and rubbery brush layers were measured with atomic force microscope. We observed that for the PS layers with the thickness higher than 7 nm, the average value of the elastic moduli reached 1.1 GPa, which is close, but still lower than the expected for bulk polymer. The elastic modulus of PS polymer brush layers dramatically depends upon molecular weight and follows the inverse law with segment molecular weight, M c of 18,000 known for bulk PS. This result indicates that the process of the formation of the physical network within polymer melt of chains tethered to a solid substrate is similar to that occurring in unconstrained polymer melt. Under these conditions, three PS brush layers studied in this work represent different cases of chains without stable entanglements for M , M c as well as chains with stable entanglements for brushes with M , M c : This transition shows itself in significant reduction of the compliance reflected in twofold increase in elastic modulus. Our estimation predicts that modest lowering of &apos;limiting&apos; elastic modulus of 1.4 GPa can be expected for thicker polymer brushes.

    Elastic Moduli of Ultrathin Amorphous Polymer Films

    No full text
    The elastic moduli of ultrathin poly(styrene) (PS) and poly(methylmethacrylate) (PMMA) films of thickness ranging from 200 nm to 5 nm were investigated using a buckling-based metrology. Below 40 nm, the apparent modulus of the PS and PMMA films decreases dramatically, with an order of magnitude decrease compared to bulk values for the thinnest films measured. We can account for the observed decrease in apparent modulus by applying a composite model based on the film having a surface layer with a reduced modulus and of finite thickness. The observed decrease in the apparent modulus highlights issues in mechanical stability and robustness of sub-40 nm polymer films and features
    corecore