262 research outputs found

    Thermal radiation and near-field energy density of thin metallic films

    Full text link
    We study the properties of thermal radiation emitted by a thin dielectric slab, employing the framework of macroscopic fluctuational electrodynamics. Particular emphasis is given to the analytical construction of the required dyadic Green's functions. Based on these, general expressions are derived for both the system's Poynting vector, describing the intensity of propagating radiation, and its energy density, containing contributions from non-propagating modes which dominate the near-field regime. An extensive discussion is then given for thin metal films. It is shown that the radiative intensity is maximized for a certain film thickness, due to Fabry-Perot-like multiple reflections inside the film. The dependence of the near-field energy density on the distance from the film's surface is governed by an interplay of several length scales, and characterized by different exponents in different regimes. In particular, this energy density remains finite even for arbitrarily thin films. This unexpected feature is associated with the film's low-frequency surface plasmon polariton. Our results also serve as reference for current near-field experiments which search for deviations from the macroscopic approach

    Casimir force between designed materials: what is possible and what not

    Full text link
    We establish strict upper limits for the Casimir interaction between multilayered structures of arbitrary dielectric or diamagnetic materials. We discuss the appearance of different power laws due to frequency-dependent material constants. Simple analytical expressions are in good agreement with numerical calculations based on Lifshitz theory. We discuss the improvements required for current (meta) materials to achieve a repulsive Casimir force.Comment: 9 pages, 4 figures, graphicx, v4: Europhysics Letters, in pres

    Monte Carlo transient phonons transport in silicon and germanium at nanoscales

    Full text link
    Heat transport at nanoscales in semiconductors is investigated with a statistical method. The Boltzmann Transport Equation (BTE) which characterize phonons motion and interaction within the crystal lattice has been simulated with a Monte Carlo technique. Our model takes into account media frequency properties through the dispersion curves for longitudinal and transverse acoustic branches. The BTE collisional term involving phonons scattering processes is simulated with the Relaxation Times Approximation theory. A new distribution function accounting for the collisional processes has been developed in order to respect energy conservation during phonons scattering events. This non deterministic approach provides satisfactory results in what concerns phonons transport in both ballistic and diffusion regimes. The simulation code has been tested with silicon and germanium thin films; temperature propagation within samples is presented and compared to analytical solutions (in the diffusion regime). The two materials bulk thermal conductivity is retrieved for temperature ranging between 100 K and 500 K. Heat transfer within a plane wall with a large thermal gradient (250 K-500 K) is proposed in order to expose the model ability to simulate conductivity thermal dependence on heat exchange at nanoscales. Finally, size effects and validity of heat conduction law are investigated for several slab thicknesses

    Electromagnetic field correlations near a surface with a nonlocal optical response

    Full text link
    The coherence length of the thermal electromagnetic field near a planar surface has a minimum value related to the nonlocal dielectric response of the material. We perform two model calculations of the electric energy density and the field's degree of spatial coherence. Above a polar crystal, the lattice constant gives the minimum coherence length. It also gives the upper limit to the near field energy density, cutting off its 1/z31/z^3 divergence. Near an electron plasma described by the semiclassical Lindhard dielectric function, the corresponding length scale is fixed by plasma screening to the Thomas-Fermi length. The electron mean free path, however, sets a larger scale where significant deviations from the local description are visible.Comment: 15 pages, 7 figure files (.eps), \documentclass[global]{svjour}, accepted in special issue "Optics on the Nanoscale" (Applied Physics B, eds. V. Shalaev and F. Tr\"ager

    A model for atomic and molecular interstellar gas: The Meudon PDR code

    Get PDF
    We present the revised ``Meudon'' model of Photon Dominated Region (PDR code), presently available on the web under the Gnu Public Licence at: http://aristote.obspm.fr/MIS. General organisation of the code is described down to a level that should allow most observers to use it as an interpretation tool with minimal help from our part. Two grids of models, one for low excitation diffuse clouds and one for dense highly illuminated clouds, are discussed, and some new results on PDR modelisation highlighted.Comment: accepted in ApJ sup

    Electron-Ion Recombination on Grains and Polycyclic Aromatic Hydrocarbons

    Get PDF
    With the high-resolution spectroscopy now available in the optical and satellite UV, it is possible to determine the neutral/ionized column density ratios for several different elements in a single cloud. Assuming ionization equilibrium for each element, one can make several independent determinations of the electron density. For the clouds for which such an analysis has been carried out, these different estimates disagree by large factors, suggesting that some process (or processes) besides photoionization and radiative recombination might play an important role in the ionization balance. One candidate process is collisions of ions with dust grains. Making use of recent work quantifying the abundances of polycyclic aromatic hydrocarbon molecules and other grains in the interstellar medium, as well as recent models for grain charging, we estimate the grain-assisted ion recombination rates for several astrophysically important elements. We find that these rates are comparable to the rates for radiative recombination for conditions typical of the cold neutral medium. Including grain-assisted ion recombination in the ionization equilibrium analysis leads to increased consistency in the various electron density estimates for the gas along the line of sight to 23 Orionis. However, not all of the discrepancies can be eliminated in this way; we speculate on some other processes that might play a role. We also note that grain-assisted recombination of H+ and He+ leads to significantly lower electron fractions than usually assumed for the cold neutral medium.Comment: LaTeX(12 pages, 8 figures, uses emulateapj5.sty, apjfonts.sty); submitted to ApJ; corrected typo

    Chemical Rates on Small Grains and PAHs: C^+ Recombination and H_2 Formation

    Full text link
    We use observations of the CI, CII, HI, and H_2 column densities along lines of sight in the Galactic plane to determine the formation rate of H_2 on grains and to determine chemical reaction rates with Polycyclic Aromatic Hydrocarbons. Photodissociation region models are used to find the best fit parameters to the observed columns. We find the H_2 formation rate on grains has a low rate (R ~ 1 x 10^(-17) cm^(3) s^(-1)) along lines of sight with low column density (A_V < 0.25) and low molecular fraction (f_(H_2) < 10^(-4)). At higher column densities (0.25 < A_V <2.13), we find a rate of R ~ 3.5x10^(-17) cm^(3) s^(-1). The lower rate at low column densities could be the result of grain processing by interstellar shocks which may deplete the grain surface area or process the sites of H +H formation, thereby inhibiting H_2 production. Alternatively, the formation rate may be normal, and the low molecular fraction may be the result of lines of sight which graze larger clouds. Such lines of sight would have a reduced H_2 self-shielding compared to the line-of-sight column. We find the reaction C^+ +PAH^- --> C + PAH^0 is best fit with a rate 2.4 x 10^(-7) \Phi_PAH T_2^(-0.5) cm^(3) s^(-1) with T_2= T/100 K and the reaction C^+ + PAH^0 --> C + PAH^+ is best fit with a rate 8.8x 10^(-9)\Phi_PAH cm^(3) s^(-1). In high column density gas we find \Phi_PAH ~ 0.4. In low column density gas, \Phi_PAH is less well constrained with \Phi_PAH ~ 0.2 - 0.4.Comment: 40 pages, 12 figure, accepted for publication in the Astrophysical Journal, June 10, 2008, vol 680 issu

    Charge and Current Sum Rules in Quantum Media Coupled to Radiation

    Full text link
    This paper concerns the equilibrium bulk charge and current density correlation functions in quantum media, conductors and dielectrics, fully coupled to the radiation (the retarded regime). A sequence of static and time-dependent sum rules, which fix the values of certain moments of the charge and current density correlation functions, is obtained by using Rytov's fluctuational electrodynamics. A technique is developed to extract the classical and purely quantum-mechanical parts of these sum rules. The sum rules are critically tested in the classical limit and on the jellium model. A comparison is made with microscopic approaches to systems of particles interacting through Coulomb forces only (the non-retarded regime). In contrast with microscopic results, the current-current correlation function is found to be integrable in space, in both classical and quantum regimes.Comment: 19 pages, 1 figur
    • …
    corecore