2,264 research outputs found
Mapping of wildlife habitat in Farmington Bay, Utah
Mapping was accomplished through the interpretation of high-altitude color infrared photography. The feasibility of utilizing LANDSAT digital data to augment the analysis was explored; complex patterns of wildlife habitat and confusion of spectral classes resulted in the decision to make limited use of LANDSAT data in the analysis. The final product is a map which delineates wildlife habitat at a scale of 1:24,000. The map is registered to and printed on a screened U.S.G.S. quadrangle base map. Screened delineations of shoreline contours, mapped from a previous study, are also shown on the map. Intensive field checking of the map was accomplished for the Farmington Bay Waterfowl Management Area in August 1981; other areas on the map received only spot field checking
Microcanonical Origin of the Maximum Entropy Principle for Open Systems
The canonical ensemble describes an open system in equilibrium with a heat
bath of fixed temperature. The probability distribution of such a system, the
Boltzmann distribution, is derived from the uniform probability distribution of
the closed universe consisting of the open system and the heat bath, by taking
the limit where the heat bath is much larger than the system of interest.
Alternatively, the Boltzmann distribution can be derived from the Maximum
Entropy Principle, where the Gibbs-Shannon entropy is maximized under the
constraint that the mean energy of the open system is fixed. To make the
connection between these two apparently distinct methods for deriving the
Boltzmann distribution, it is first shown that the uniform distribution for a
microcanonical distribution is obtained from the Maximum Entropy Principle
applied to a closed system. Then I show that the target function in the Maximum
Entropy Principle for the open system, is obtained by partial maximization of
Gibbs-Shannon entropy of the closed universe over the microstate probability
distributions of the heat bath. Thus, microcanonical origin of the Entropy
Maximization procedure for an open system, is established in a rigorous manner,
showing the equivalence between apparently two distinct approaches for deriving
the Boltzmann distribution. By extending the mathematical formalism to
dynamical paths, the result may also provide an alternative justification for
the principle of path entropy maximization as well.Comment: 12 pages, no figur
A two-step MaxLik-MaxEnt strategy to infer photon distribution from on/off measurement at low quantum efficiency
A method based on Maximum-Entropy (ME) principle to infer photon distribution
from on/off measurements performed with few and low values of quantum
efficiency is addressed. The method consists of two steps: at first some
moments of the photon distribution are retrieved from on/off statistics using
Maximum-Likelihood estimation, then ME principle is applied to infer the
quantum state and, in turn, the photon distribution. Results from simulated
experiments on coherent and number states are presented.Comment: 4 figures, to appear in EPJ
Measurement Invariance, Entropy, and Probability
We show that the natural scaling of measurement for a particular problem
defines the most likely probability distribution of observations taken from
that measurement scale. Our approach extends the method of maximum entropy to
use measurement scale as a type of information constraint. We argue that a very
common measurement scale is linear at small magnitudes grading into logarithmic
at large magnitudes, leading to observations that often follow Student's
probability distribution which has a Gaussian shape for small fluctuations from
the mean and a power law shape for large fluctuations from the mean. An inverse
scaling often arises in which measures naturally grade from logarithmic to
linear as one moves from small to large magnitudes, leading to observations
that often follow a gamma probability distribution. A gamma distribution has a
power law shape for small magnitudes and an exponential shape for large
magnitudes. The two measurement scales are natural inverses connected by the
Laplace integral transform. This inversion connects the two major scaling
patterns commonly found in nature. We also show that superstatistics is a
special case of an integral transform, and thus can be understood as a
particular way in which to change the scale of measurement. Incorporating
information about measurement scale into maximum entropy provides a general
approach to the relations between measurement, information and probability
Laser beam hydrocarbon detector
Portable instrument passes light from helium-neon laser at a wavelength of 3.39 microns through the atmosphere being monitored and measures attenuation of the laser beam. Since beam attenuation is due almost exclusively to absorption of radiation by hydrocarbons, a quantitative measure of their concentration is available
Illusory Decoherence
If a quantum experiment includes random processes, then the results of
repeated measurements can appear consistent with irreversible decoherence even
if the system's evolution prior to measurement was reversible and unitary. Two
thought experiments are constructed as examples.Comment: 10 pages, 3 figure
Characterizing the Galactic Gravitational Wave Background with LISA
We present a Monte Carlo simulation for the response of the Laser
Interferometer Space Antenna (LISA) to the galactic gravitational wave
background. The simulated data streams are used to estimate the number and type
of binary systems that will be individually resolved in a 1-year power
spectrum. We find that the background is highly non-Gaussian due to the
presence of individual bright sources, but once these sources are identified
and removed, the remaining signal is Gaussian. We also present a new estimate
of the confusion noise caused by unresolved sources that improves on earlier
estimates.Comment: 32 pages, 14 figures. Version to appear in PR
Static investigation of the circulation control wing/upper surface blowing concept applied to the quiet short haul research aircraft
Full scale static investigations were conducted on the Quiet Short Haul Research Aircraft (QSRA) to determine the thrust deflecting capabilities of the circulation control wing/upper surface blowing (CCW/USB) concept. This scheme, which combines favorable characteristics of both the A-6/CCW and QSRA, employs the flow entrainment properties of CCW to pneumatically deflect engine thrust in lieu of the mechanical USB flap system. Results show that the no moving parts blown system produced static thrust deflections in the range of 40 deg to 97 deg (depending on thrust level) with a CCW pressure of 208,900 Pa (30.3 psig). In addition, the ability to vary horizontal forces from thrust to drag while maintaining a constant vertical (or lift) value was demonstrated by varying the blowing pressure. The versatility of the CCW/USB system, if applied to a STOL aircraft, was confirmed, where rapid conversion from a high drag approach mode to a thrust recovering waveoff or takeoff configuration could be achieved by nearly instantaneous blowing pressure variation
- …
