111 research outputs found

    Liquid crystal films on curved surfaces: An entropic sampling study

    Full text link
    The confining effect of a spherical substrate inducing anchoring (normal to the surface) of rod-like liquid crystal molecules contained in a thin film spread over it has been investigated with regard to possible changes in the nature of the isotropic-to-nematic phase transition as the sample is cooled. The focus of these Monte Carlo simulations is to study the competing effects of the homeotropic anchoring due to the surface inducing orientational ordering in the radial direction and the inherent uniaxial order promoted by the intermolecular interactions. By adopting entropic sampling procedure, we could investigate this transition with a high temperature precision, and we studied the effect of the surface anchoring strength on the phase diagram for a specifically chosen geometry. We find that there is a threshold anchoring strength of the surface below which uniaxial nematic phase results, and above which the isotropic fluid cools to a radially ordered nematic phase, besides of course expected changes in the phase transition temperature with the anchoring strength. In the vicinity of the threshold anchoring strength we observe a bistable region between these two structures, clearly brought out by the characteristics of the corresponding microstates constituting the entropic ensemble.Comment: 14 pages, 5 figure

    On-board classification of underwater images using hybrid classical-quantum CNN based method

    Full text link
    Underwater images taken from autonomous underwater vehicles (AUV's) often suffer from low light, high turbidity, poor contrast, motion-blur and excessive light scattering and hence require image enhancement techniques for object recognition. Machine learning methods are being increasingly used for object recognition under such adverse conditions. These enhanced object recognition methods of images taken from AUV's has potential applications in underwater pipeline and optical fibre surveillance, ocean bed resource extraction, ocean floor mapping, underwater species exploration, etc. While the classical machine learning methods are very efficient in terms of accuracy, they require large datasets and high computational time for image classification. In the current work, we use quantum-classical hybrid machine learning methods for real-time under-water object recognition on-board an AUV for the first time. We use real-time motion-blurred and low-light images taken from an on-board camera of AUV built in-house and apply existing hybrid machine learning methods for object recognition. Our hybrid methods consist of quantum encoding and flattening of classical images using quantum circuits and sending them to classical neural networks for image classification. The results of hybrid methods carried out using Pennylane based quantum simulators both on GPU and using pre-trained models on an on-board NVIDIA GPU chipset are compared with results from corresponding classical machine learning methods. We observe that the hybrid quantum machine learning methods show an efficiency greater than 65\% and reduction in run-time by one-thirds and require 50\% smaller dataset sizes for training the models compared to classical machine learning methods. We hope that our work opens up further possibilities in quantum enhanced real-time computer vision in autonomous vehicles

    Hypoxia sensing requires H<sub>2</sub>S-dependent persulfidation of olfactory receptor 78

    Get PDF
    Oxygen (O2) sensing by the carotid body is critical for maintaining cardiorespiratory homeostasis during hypoxia. Hydrogen sulfide (H2S) signaling is implicated in carotid body activation by low O2. Here, we show that persulfidation of olfactory receptor 78 (Olfr78) by H2S is an integral component of carotid body activation by hypoxia. Hypoxia and H2S increased persulfidation in carotid body glomus cells and persulfidated cysteine240 in Olfr78 protein in heterologous system. Olfr78 mutants manifest impaired carotid body sensory nerve, glomus cell, and breathing responses to H2S and hypoxia. Glomus cells are positive for GOlf, adenylate cyclase 3 (Adcy3) and cyclic nucleotide–gated channel alpha 2 (Cnga2), key molecules of odorant receptor signaling. Adcy3 or Cnga2 mutants exhibited impaired carotid body and glomus cell responses to H2S and breathing responses to hypoxia. These results suggest that H2S through redox modification of Olfr78 participates in carotid body activation by hypoxia to regulate breathing

    Hydrogen Excitation in H-α Collision by Second Born Approximation

    Get PDF

    ANALYSIS OF DATA SKIPPING USING LOW TRANSITION SWITCH REGISTERS

    Full text link
    corecore