299 research outputs found

    Structural basis for recruitment of mitochondrial fission complexes by Fis1

    Get PDF
    Mitochondrial fission controls mitochondrial shape and physiology, including mitochondrial remodeling in apoptosis. During assembly of the yeast mitochondrial fission complex, the outer membrane protein Fis1 recruits the dynamin-related GTPase Dnm1 to mitochondria. Fis1 contains a tetratricopeptide repeat (TPR) domain and interacts with Dnm1 via the molecular adaptors Mdv1 and Caf4. By using crystallographic analysis of adaptor-Fis1 complexes, we show that these adaptors use two helices to bind to both the concave and convex surfaces of the Fis1 TPR domain. Fis1 therefore contains two interaction interfaces, a binding mode that, to our knowledge, has not been observed previously for TPR domains. Genetic and biochemical studies indicate that both binding interfaces are important for binding of Mdv1 and Caf4 to Fis1 and for mitochondrial fission activity in vivo. Our results reveal how Fis1 recruits the mitochondrial fission complex and will facilitate efforts to manipulate mitochondrial fission

    Mitochondrial Dysfunction in Astrocytes Impairs the Generation of Reactive Astrocytes and Enhances Neuronal Cell Death in the Cortex Upon Photothrombotic Lesion

    Get PDF
    Mitochondria are key organelles in regulating the metabolic state of a cell. In the brain, mitochondrial oxidative metabolism is the prevailing mechanism for neurons to generate ATP. While it is firmly established that neuronal function is highly dependent on mitochondrial metabolism, it is less well-understood how astrocytes function rely on mitochondria. In this study, we investigate if astrocytes require a functional mitochondrial electron transport chain (ETC) and oxidative phosphorylation (oxPhos) under physiological and injury conditions. By immunohistochemistry we show that astrocytes expressed components of the ETC and oxPhos complexes in vivo. Genetic inhibition of mitochondrial transcription by conditional deletion of mitochondrial transcription factor A (Tfam) led to dysfunctional ETC and oxPhos activity, as indicated by aberrant mitochondrial swelling in astrocytes. Mitochondrial dysfunction did not impair survival of astrocytes, but caused a reactive gliosis in the cortex under physiological conditions. Photochemically initiated thrombosis induced ischemic stroke led to formation of hyperfused mitochondrial networks in reactive astrocytes of the perilesional area. Importantly, mitochondrial dysfunction significantly reduced the generation of new astrocytes and increased neuronal cell death in the perilesional area. These results indicate that astrocytes require a functional ETC and oxPhos machinery for proliferation and neuroprotection under injury conditions

    Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine

    Get PDF
    In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown

    International, multicenter standardization of acute graft-versus-host disease clinical data collection: a report from the Mount Sinai Acute GVHD International Consortium

    Get PDF
    Acute graft-versus-host disease (GVHD) remains a leading cause of morbidity and nonrelapse mortality after allogeneic hematopoietic cell transplantation. The clinical staging of GVHD varies greatly between transplant centers and is frequently not agreed on by independent reviewers. The lack of standardized approaches to handle common sources of discrepancy in GVHD grading likely contributes to why promising GVHD treatments reported from single centers have failed to show benefit in randomized multicenter clinical trials. We developed guidelines through international expert consensus opinion to standardize the diagnosis and clinical staging of GVHD for use in a large international GVHD research consortium. During the first year of use, the guidance followed discussion of complex clinical phenotypes by experienced transplant physicians and data managers. These guidelines increase the uniformity of GVHD symptom capture, which may improve the reproducibility of GVHD clinical trials after further prospective validation

    Phagocytosis of Cholesteryl Ester Is Amplified in Diabetic Mouse Macrophages and Is Largely Mediated by CD36 and SR-A

    Get PDF
    Type 2 diabetes (T2D) is associated with accelerated atherosclerosis, which accounts for approximately 75% of all diabetes-related deaths. Here we investigate the link between diabetes and macrophage cholesteryl ester accumulation. When diabetic (db/db) mice are given cholesteryl ester intraperitoneally (IP), peritoneal macrophages (PerMΦs) recovered from these animals showed a 58% increase in intracellular cholesteryl ester accumulation over PerMΦs from heterozygote control (db/+) mice. Notably, PerMΦ fluid-phase endocytosis and large particle phagocytosis was equivalent in db/+and db/db mice. However, IP administration of CD36 and SR-A blocking antibodies led to 37% and 25% reductions in cholesteryl ester accumulation in PerMΦ. Finally, in order to determine if these scavenger receptors (SRs) were part of the mechanism responsible for the increased accumulation of cholesteryl esters observed in the diabetic mouse macrophages, receptor expression was quantified by flow cytometry. Importantly, db/db PerMΦs showed a 43% increase in CD36 expression and an 80% increase in SR-A expression. Taken together, these data indicate that direct cholesteryl ester accumulation in mouse macrophages is mediated by CD36 and SR-A, and the magnitude of accumulation is increased in db/db macrophages due to increased scavenger receptor expression

    Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis

    Get PDF
    Ca2+ transfer from endoplasmic reticulum (ER) to mitochondria can trigger apoptotic pathways by inducing release of mitochondrial pro-apoptotic factors. Three different types of inositol 1,4,5-trisphosphate receptor (IP3R) serve to discharge Ca2+ from ER, but possess some peculiarities, especially in apoptosis induction. The anti-apoptotic protein Akt can phosphorylate all IP3R isoforms and protect cells from apoptosis, reducing ER Ca2+ release. However, it has not been elucidated which IP3R subtypes mediate these effects. Here, we show that Akt activation in COS7 cells, which lack of IP3R I, strongly suppresses IP3-mediated Ca2+ release and apoptosis. Conversely, in SH-SY 5Y cells, which are type III-deficient, Akt is unable to modulate ER Ca2+ flux, losing its anti-apoptotic activity. In SH-SY 5Y-expressing subtype III, Akt recovers its protective function on cell death, by reduction of Ca2+ release. Moreover, regulating Ca2+ flux to mitochondria, Akt maintains the mitochondrial integrity and delays the trigger of apoptosis, in a type III-dependent mechanism. These results demonstrate a specific activity of Akt on IP3R III, leading to diminished Ca2+ transfer to mitochondria and protection from apoptosis, suggesting an additional level of cell death regulation mediated by Akt

    Comorbidity burden in patients with chronic GVHD

    Get PDF
    Chronic graft-versus-host disease (cGVHD) is associated with mortality, disability and impaired quality of life. Understanding the role of comorbidity in patients with cGVHD is important both for prognostication and potentially for tailoring treatments based on mortality risks. In a prospective cohort study of patients with cGVHD (n=239), we examined the performance of two comorbidity scales, the Functional Comorbidity Index (FCI) and the Hematopoietic Cell Transplantation-specific Comorbidity Index (HCT-CI). Both scales detected a higher number of comorbidities at cGVHD cohort enrollment than pre-HCT (p<0.001). Higher HCT-CI scores at the time of cGVHD cohort enrollment were associated with higher non-relapse mortality (HR 1.21:1.04–1.42,p=0.01). For overall mortality, we detected an interaction with platelet count. Higher HCT-CI scores at enrollment were associated with an increased risk of overall mortality when the platelet count was less than or equal to 100,000/µl (HR 2.01: 1.20–3.35, p=0.01), but not when it was greater than 100,000/µl (HR 1.05: 0.90–1.22, p=0.53). Comorbidity scoring may help better predict survival outcomes in patients with cGVHD. Further studies to understand vulnerability unrelated to cGVHD activity in this patient population are needed
    • …
    corecore