4,803 research outputs found
Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth
In the present contribution we review basic mathematical results for three
physical systems involving self-organising solid or liquid films at solid
surfaces. The films may undergo a structuring process by dewetting,
evaporation/condensation or epitaxial growth, respectively. We highlight
similarities and differences of the three systems based on the observation that
in certain limits all of them may be described using models of similar form,
i.e., time evolution equations for the film thickness profile. Those equations
represent gradient dynamics characterized by mobility functions and an
underlying energy functional.
Two basic steps of mathematical analysis are used to compare the different
system. First, we discuss the linear stability of homogeneous steady states,
i.e., flat films; and second the systematics of non-trivial steady states,
i.e., drop/hole states for dewetting films and quantum dot states in epitaxial
growth, respectively. Our aim is to illustrate that the underlying solution
structure might be very complex as in the case of epitaxial growth but can be
better understood when comparing to the much simpler results for the dewetting
liquid film. We furthermore show that the numerical continuation techniques
employed can shed some light on this structure in a more convenient way than
time-stepping methods.
Finally we discuss that the usage of the employed general formulation does
not only relate seemingly not related physical systems mathematically, but does
as well allow to discuss model extensions in a more unified way
Driving Rydberg-Rydberg transitions from a co-planar microwave waveguide
The coherent interaction between ensembles of helium Rydberg atoms and
microwave fields in the vicinity of a solid-state co-planar waveguide is
reported. Rydberg-Rydberg transitions, at frequencies between 25 GHz and 38
GHz, have been studied for states with principal quantum numbers in the range
30 - 35 by selective electric-field ionization. An experimental apparatus
cooled to 100 K was used to reduce effects of blackbody radiation.
Inhomogeneous, stray electric fields emanating from the surface of the
waveguide have been characterized in frequency- and time-resolved measurements
and coherence times of the Rydberg atoms on the order of 250 ns have been
determined.Comment: 5 pages, 5 figure
Decomposition driven interface evolution for layers of binary mixtures: I. Model derivation and stratified base states
A dynamical model is proposed to describe the coupled decomposition and
profile evolution of a free surface film of a binary mixture. An example is a
thin film of a polymer blend on a solid substrate undergoing simultaneous phase
separation and dewetting. The model is based on model-H describing the coupled
transport of the mass of one component (convective Cahn-Hilliard equation) and
momentum (Navier-Stokes-Korteweg equations) supplemented by appropriate
boundary conditions at the solid substrate and the free surface.
General transport equations are derived using phenomenological
non-equilibrium thermodynamics for a general non-isothermal setting taking into
account Soret and Dufour effects and interfacial viscosity for the internal
diffuse interface between the two components. Focusing on an isothermal setting
the resulting model is compared to literature results and its base states
corresponding to homogeneous or vertically stratified flat layers are analysed.Comment: Submitted to Physics of Fluid
Demonstration of a state-insensitive, compensated nanofiber trap
We report the experimental realization of an optical trap that localizes single Cs atoms ≃ 215
nm from surface of a dielectric nanober. By operating at magic wavelengths for pairs of counterpropagating
red- and blue-detuned trapping beams, dierential scalar light shifts are eliminated, and
vector shifts are suppressed by ≈ 250. We thereby measure an absorption linewidth Γ/2π = 5.7 ± 0.1
MHz for the Cs 6S_(1/2), F = 4 → 6P_(3/2), F' = 5 transition, where Γ_0/2π = 5.2 MHz in free space.
Optical depth d ≃ 66 is observed, corresponding to an optical depth per atom d_1 ≃ 0.08. These
advances provide an important capability for the implementation of functional quantum optical
networks and precision atomic spectroscopy near dielectric surfaces
CAFE: Calar Alto Fiber-fed Echelle spectrograph
We present here CAFE, the Calar Alto Fiber-fed Echelle spectrograph, a new
instrument built at the Centro Astronomico Hispano Alem\'an (CAHA). CAFE is a
single fiber, high-resolution (70000) spectrograph, covering the
wavelength range between 3650-9800\AA. It was built on the basis of the common
design for Echelle spectrographs. Its main aim is to measure radial velocities
of stellar objects up to 13-14 mag with a precision as good as a few
tens of . To achieve this goal the design was simplified at maximum,
removing all possible movable components, the central wavelength is fixed, so
the wavelentgth coverage; no filter wheel, one slit and so on, with a
particular care taken in the thermal and mechanical stability. The instrument
is fully operational and publically accessible at the 2.2m telescope of the
Calar Alto Observatory.
In this article we describe (i) the design, summarizing its manufacturing
phase; (ii) characterize the main properties of the instrument; (iii) describe
the reduction pipeline; and (iv) show the results from the first light and
commissioning runs. The preliminar results indicate that the instrument fulfill
the specifications and it can achieve the foreseen goals. In particular, they
show that the instrument is more efficient than anticipated, reaching a
20 for a stellar object as faint as 14.5 mag in 2700s
integration time. The instrument is a wonderful machine for exoplanetary
research (by studying large samples of possible systems cotaining massive
planets), galactic dynamics (high precise radial velocities in moving groups or
stellar associations) or astrochemistry.Comment: 12 pages, 23 figures; Acepted for publishing in A&A, 201
Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration
In this paper we propose several models that describe the dynamics of liquid
films which are covered by a high concentration layer of insoluble surfactant.
First, we briefly review the 'classical' hydrodynamic form of the coupled
evolution equations for the film height and surfactant concentration that are
well established for small concentrations. Then we re-formulate the basic model
as a gradient dynamics based on an underlying free energy functional that
accounts for wettability and capillarity. Based on this re-formulation in the
framework of nonequilibrium thermodynamics, we propose extensions of the basic
hydrodynamic model that account for (i) nonlinear equations of state, (ii)
surfactant-dependent wettability, (iii) surfactant phase transitions, and (iv)
substrate-mediated condensation. In passing, we discuss important differences
to most of the models found in the literature.Comment: 31 pages, 2 figure
Influence of strain on magnetization and magnetoelectric effect in La0.7A0.3MnO3 / PMN-PT(001) (A = Sr; Ca)
We investigate the influence of a well-defined reversible biaxial strain
<=0.12 % on the magnetization (M) of epitaxial ferromagnetic manganite films. M
has been recorded depending on temperature, strain and magnetic field in 20 -
50 nm thick films. This is accomplished by reversibly compressing the isotropic
in-plane lattice parameter of the rhombohedral piezoelectric 0.72PMN-0.28PT
(001) substrates by application of an electric field E <= 12 kV cm-1. The
magnitude of the total variable in-plane strain has been derived.
Strain-induced shifts of the ferromagnetic Curie temperature (Tc) of up to 19 K
were found in La0.7Sr0.3MnO3 (LSMO) and La0.7Ca0.3MnO3 films and are
quantitatively analysed for LSMO within a cubic model. The observed large
magnetoelectric coupling coefficient alpha=mu0 dM/dE <= 6 10-8 s m-1 at ambient
temperature results from the strain-induced M change in the
magnetic-film-ferroelectric-substrate system. It corresponds to an enhancement
of mu0 DeltaM <= 19 mT upon biaxial compression of 0.1 %. The extraordinary
large alpha originates from the combination of three crucial properties: (i)
the strong strain dependence of M in the ferromagnetic manganites, (ii) large
piezo-strain of the PMN-PT substrates and (iii) effective elastic coupling at
the film-substrate interface.Comment: 15 pages, 6 figures, 1 tabl
The relation of steady evaporating drops fed by an influx and freely evaporating drops
We discuss a thin film evolution equation for a wetting evaporating liquid on
a smooth solid substrate. The model is valid for slowly evaporating small
sessile droplets when thermal effects are insignificant, while wettability and
capillarity play a major role. The model is first employed to study steady
evaporating drops that are fed locally through the substrate. An asymptotic
analysis focuses on the precursor film and the transition region towards the
bulk drop and a numerical continuation of steady drops determines their fully
non-linear profiles.
Following this, we study the time evolution of freely evaporating drops
without influx for several initial drop shapes. As a result we find that drops
initially spread if their initial contact angle is larger than the apparent
contact angle of large steady evaporating drops with influx. Otherwise they
recede right from the beginning
The night-sky at the Calar Alto Observatory II: The sky at the near infrared
We present here the characterization of the night sky-brightness at the
near-infrared, the telescope seeing, and the fraction of useful time at the
Calar Alto observatory. For this study we have collected a large dataset
comprising 7311 near-infrared images taken regularly along the last four years
for the ALHAMBRA survey (J, H and Ks-bands), together with a more reduced
dataset of additional near-infrared images taken for the current study. In
addition we collected the information derived by the meteorological station at
the observatory during the last 10 years, together with the results from the
cloud sensor for the last ~2 years. We analyze the dependency of the
near-infrared night sky-brightness with the airmass and the seasons, studying
its origins and proposing a zenithal correction. A strong correlation is found
between the night sky-brightness in the Ks-band and the air temperature, with a
gradient of ~ -0.08 mag per 1 C degree. The typical (darkest) night
sky-brightness in the J, H and Ks-band are 15.95 mag (16.95 mag), 13.99 mag
(14.98 mag) and 12.39 mag (13.55 mag), respectively. These values show that
Calar Alto is as dark in the near-infrared as most of the other astronomical
astronomical sites in the world that we could compare with. Only Mauna Kea is
clearly darker in the Ks-band. The typical telescope seeing at the 3.5m is
~1.0" when converted to the V-band, being only slightly larger than the
atmospheric seeing measured at the same time by the seeing monitor, ~0.9".
Finally we estimate the fraction of useful time based on the relative humidity,
gust wind speed and presence of clouds. This fraction, ~72%, is very similar to
the one derived in Paper I, based on the fraction of time when the extinction
monitor is working.Comment: 15 pages, 6 figures, accepted to be published in PAS
Binding potential and wetting behaviour of binary liquid mixtures on surfaces
We present a theory for the interfacial wetting phase behaviour of binary
liquid mixtures on rigid solid substrates, applicable to both miscible and
immiscible mixtures. In particular, we calculate the binding potential as a
function of the adsorptions, i.e. the excess amounts of each of the two liquids
at the substrate. The binding potential fully describes the corresponding
interfacial thermodynamics. Our approach is based on classical density
functional theory. Binary liquid mixtures can exhibit complex bulk phase
behaviour, including both liquid-liquid and vapour-liquid phase separation,
depending on the nature of the interactions between all the particles of the
two different liquids, the temperature and the chemical potentials. Here we
show that the interplay between the bulk phase behaviour of the mixture and the
properties of the interactions with the substrate gives rise to a wide variety
of interfacial phase behaviours, including mixing and demixing situations. We
find situations where the final state is a coexistence of up to three different
phases. We determine how the liquid density profiles close to the substrate
change as the interaction parameters are varied and how these determine the
form of the binding potential, which in certain cases can be a multi-valued
function of the adsorptions. We also present profiles for sessile droplets of
both miscible and immiscible binary liquids.Comment: 22 pages, 23 figure
- …