2,330 research outputs found

    NUT-Charged Black Holes in Gauss-Bonnet Gravity

    Full text link
    We investigate the existence of Taub-NUT/bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in dd dimensions. We find that for all non-extremal NUT solutions of Einstein gravity having no curvature singularity at r=Nr=N, there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter α\alpha goes to zero. Furthermore there are no NUT solutions in Gauss-Bonnet gravity that yield non-extremal NUT solutions to Einstein gravity having a curvature singularity at r=Nr=N in the limit % \alpha \to 0. Indeed, we have non-extreme NUT solutions in 2+2k2+2k dimensions with non-trivial fibration only when the 2k2k-dimensional base space is chosen to be CP2k\mathbb{CP}^{2k}. We also find that the Gauss-Bonnet gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a 2-dimensional factor space of positive curvature. Indeed, when the base space has at most one positively curved two dimensional space as one of its factor spaces, then Gauss-Bonnet gravity admits extreme NUT solutions, even though there a curvature singularity exists at r=Nr=N. We also find that one can have bolt solutions in Gauss-Bonnet gravity with any base space with factor spaces of zero or positive constant curvature. The only case for which one does not have bolt solutions is in the absence of a cosmological term with zero curvature base space.Comment: 20 pages, referrence added, a few typos correcte

    An integrated care pathway for menorrhagia across the primary–secondary interface : patients' experience, clinical outcomes, and service utilisation

    Get PDF
    Background: ‘‘Referral’’ characterises a significant area of interaction between primary and secondary care. Despite advantages, it can be inflexible, and may lead to duplication. Objective: To examine the outcomes of an integrated model that lends weight to general practitioner (GP)-led evidence based care. Design: A prospective, non-random comparison of two services: women attending the new (Bridges) pathway compared with those attending a consultant-led one-stop menstrual clinic (OSMC). Patients’ views were examined using patient career diaries, health and clinical outcomes, and resource utilisation. Follow-up was for 8 months. Setting: A large teaching hospital and general practices within one primary care trust (PCT). Results: Between March 2002 and June 2004, 99 women in the Bridges pathway were compared with 94 women referred to the OSMC by GPs from non-participating PCTs. The patient career diary demonstrated a significant improvement in the Bridges group for patient information, fitting in at the point of arrangements made for the patient to attend hospital (ease of access) (p,0.001), choice of doctor (p = 0.020), waiting time for an appointment (p,0.001), and less ‘‘limbo’’ (patient experience of non-coordination between primary and secondary care) (p,0.001). At 8 months there were no significant differences between the two groups in surgical and medical treatment rates or in the use of GP clinic appointments. Significantly fewer (traditional) hospital outpatient appointments were made in the Bridges group than in the OSMC group (p,0.001). Conclusion: A general practice-led model of integrated care can significantly reduce outpatient attendance while improving patient experience, and maintaining the quality of care

    Taub-NUT/Bolt Black Holes in Gauss-Bonnet-Maxwell Gravity

    Full text link
    We present a class of higher dimensional solutions to Gauss-Bonnet-Maxwell equations in 2k+22k+2 dimensions with a U(1) fibration over a 2k2k-dimensional base space B\mathcal{B}. These solutions depend on two extra parameters, other than the mass and the NUT charge, which are the electric charge qq and the electric potential at infinity VV. We find that the form of metric is sensitive to geometry of the base space, while the form of electromagnetic field is independent of B\mathcal{B}. We investigate the existence of Taub-NUT/bolt solutions and find that in addition to the two conditions of uncharged NUT solutions, there exist two other conditions. These two extra conditions come from the regularity of vector potential at r=Nr=N and the fact that the horizon at r=Nr=N should be the outer horizon of the black hole. We find that for all non-extremal NUT solutions of Einstein gravity having no curvature singularity at r=Nr=N, there exist NUT solutions in Gauss-Bonnet-Maxwell gravity. Indeed, we have non-extreme NUT solutions in 2+2k2+2k dimensions only when the 2k2k-dimensional base space is chosen to be CP2k\mathbb{CP}^{2k}. We also find that the Gauss-Bonnet-Maxwell gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a 2-dimensional factor space of positive curvature, even though there a curvature singularity exists at r=Nr=N. We also find that one can have bolt solutions in Gauss-Bonnet-Maxwell gravity with any base space. The only case for which one does not have black hole solutions is in the absence of a cosmological term with zero curvature base space.Comment: 23 pages, 3 figures, typos fixed, a few references adde

    Action functionals for relativistic perfect fluids

    Get PDF
    Action functionals describing relativistic perfect fluids are presented. Two of these actions apply to fluids whose equations of state are specified by giving the fluid energy density as a function of particle number density and entropy per particle. Other actions apply to fluids whose equations of state are specified in terms of other choices of dependent and independent fluid variables. Particular cases include actions for isentropic fluids and pressureless dust. The canonical Hamiltonian forms of these actions are derived, symmetries and conserved charges are identified, and the boundary value and initial value problems are discussed. As in previous works on perfect fluid actions, the action functionals considered here depend on certain Lagrange multipliers and Lagrangian coordinate fields. Particular attention is paid to the interpretations of these variables and to their relationships to the physical properties of the fluid.Comment: 40 pages, plain Te

    Colliding axisymmetric pp-waves

    Get PDF
    An exact solution is found describing the collision of axisymmetric pp-waves with M=0. They are impulsive in character and their coordinate singularities become point curvature singularities at the boundaries of the interaction region. The solution is conformally flat. Concrete examples are given, involving an ultrarelativistic black hole against a burst of pure radiation or two colliding beam- like waves.Comment: 6 pages, REVTeX, some misprints are correcte

    Homogeneous Plane-wave Spacetimes and their Stability

    Full text link
    We consider the stability of spatially homogeneous plane-wave spacetimes. We carry out a full analysis for plane-wave spacetimes in (4+1) dimensions, and find there are two cases to consider; what we call non-exceptional and exceptional. In the non-exceptional case the plane waves are stable to (spatially homogeneous) vacuum perturbations as well as a restricted set of matter perturbations. In the exceptional case we always find an instability. Also we consider the Milne universe in arbitrary dimensions and find it is also stable provided the strong energy condition is satisfied. This implies that there exists an open set of stable plane-wave solutions in arbitrary dimensions.Comment: 15 pages, no figures; minor changes, new references, to appear in CQ

    Energy and angular momentum of the weak gravitational waves on the Schwarzschild background -- quasilocal gauge-invariant formulation

    Get PDF
    It is shown that the axial and polar perturbations of the spherically symmetric black hole can be described in a gauge-invariant way. The reduced phase space describing gravitational waves outside of the horizon is described by the gauge-invariant quantities. Both degrees of freedom fulfill generalized scalar wave equation. For the axial degree of freedom the radial part of the equation corresponds to the Regge-Wheeler result (Phys. Rev. 108, 1063-1069 (1957)) and for the polar one we get Zerilli result (Phys. Rev. D2, 2141-2160 (1970)), see also Chandrasekhar (The Mathematical Theory of Black Holes,(Clarendon Press Oxford, 1983)), Moncrief (Annals of Physics 88, 323-342 (1974)) for both. An important ingredient of the analysis is the concept of quasilocality which does duty for the separation of the angular variables in the usual approach. Moreover, there is no need to represent perturbations by normal modes (with time dependence exp(ikt)\exp(-ikt)), we have fields in spacetime and the Cauchy problem for them is well defined outside of the horizon. The reduced symplectic structure explains the origin of the axial and polar invariants. It allows to introduce an energy and angular momentum for the gravitational waves which is invariant with respect to the gauge transformations. Both generators represent quadratic approximation of the ADM nonlinear formulae in terms of the perturbations of the Schwarzschild metric. We also discuss the boundary-initial value problem for the linearized Einstein equations on a Schwarzschild background outside of the horizon.Comment: 23 page

    General Gauss-Bonnet brane cosmology

    Get PDF
    We consider 5-dimensional spacetimes of constant 3-dimensional spatial curvature in the presence of a bulk cosmological constant. We find the general solution of such a configuration in the presence of a Gauss-Bonnet term. Two classes of non-trivial bulk solutions are found. The first class is valid only under a fine tuning relation between the Gauss-Bonnet coupling constant and the cosmological constant of the bulk spacetime. The second class of solutions are static and are the extensions of the AdS-Schwarzchild black holes. Hence in the absence of a cosmological constant or if the fine tuning relation is not true, the generalised Birkhoff's staticity theorem holds even in the presence of Gauss-Bonnet curvature terms. We examine the consequences in brane world cosmology obtaining the generalised Friedmann equations for a perfect fluid 3-brane and discuss how this modifies the usual scenario.Comment: 20 pages, no figures, typos corrected, refs added, section IV changed yielding novel result

    The Quantum Propagator for a Nonrelativistic Particle in the Vicinity of a Time Machine

    Get PDF
    We study the propagator of a non-relativistic, non-interacting particle in any non-relativistic ``time-machine'' spacetime of the type shown in Fig.~1: an external, flat spacetime in which two spatial regions, VV_- at time tt_- and V+V_+ at time t+t_+, are connected by two temporal wormholes, one leading from the past side of VV_- to t the future side of V+V_+ and the other from the past side of V+V_+ to the future side of VV_-. We express the propagator explicitly in terms of those for ordinary, flat spacetime and for the two wormholes; and from that expression we show that the propagator satisfies completeness and unitarity in the initial and final ``chronal regions'' (regions without closed timelike curves) and its propagation from the initial region to the final region is unitary. However, within the time machine it satisfies neither completeness nor unitarity. We also give an alternative proof of initial-region-to-final-region unitarity based on a conserved current and Gauss's theorem. This proof can be carried over without change to most any non-relativistic time-machine spacetime; it is the non-relativistic version of a theorem by Friedman, Papastamatiou and Simon, which says that for a free scalar field, quantum mechanical unitarity follows from the fact that the classical evolution preserves the Klein-Gordon inner product

    Collapsing shells of radiation in anti-de Sitter spacetimes and the hoop and cosmic censorship conjectures

    Get PDF
    Gravitational collapse of radiation in an anti-de Sitter background is studied. For the spherical case, the collapse proceeds in much the same way as in the Minkowski background, i.e., massless naked singularities may form for a highly inhomogeneous collapse, violating the cosmic censorship, but not the hoop conjecture. The toroidal, cylindrical and planar collapses can be treated together. In these cases no naked singularity ever forms, in accordance with the cosmic censorship. However, since the collapse proceeds to form toroidal, cylindrical or planar black holes, the hoop conjecture in an anti-de Sitter spacetime is violated.Comment: 4 pages, Revtex Journal: to appear in Physical Review
    corecore